Exercises
Exercises#
After completing the tutorial attempt the following exercises.
If you are not sure how to do something, have a look at the “How To” section.
Obtain the determinant and the inverses of the following matrices:
\(A = \begin{pmatrix} 1 / 5 & 1\\1 & 1\end{pmatrix}\)
\(B = \begin{pmatrix} 1 / 5 & 1 & 5\\3 & 1 & 6 \\ 1 & 2 & 1\end{pmatrix}\)
\(C = \begin{pmatrix} 1 / 5 & 5 & 5\\3 & 1 & 7 \\ a & b & c\end{pmatrix}\)
Compute the following:
\(500\begin{pmatrix} 1 / 5 & 1\\1 & 1\end{pmatrix}\)
\(\pi \begin{pmatrix} 1 / \pi & 2\pi\\3/\pi & 1\end{pmatrix}\)
\(500\begin{pmatrix} 1 / 5 & 1\\1 & 1\end{pmatrix} + \pi \begin{pmatrix} 1 / \pi & 2\pi\\3/\pi & 1\end{pmatrix}\)
\(500\begin{pmatrix} 1 / 5 & 1\\1 & 1\end{pmatrix}\begin{pmatrix} 1 / \pi & 2\pi\\3/\pi & 1\end{pmatrix}\)
The matrix \(A\) is given by \(A=\begin{pmatrix}a & 4 & 2\\ 1 & a & 0\\ 1 & 2 & 1\end{pmatrix}\).
Find the determinant of \(A\)
Hence find the values of \(a\) for which \(A\) is singular.
State, giving a brief reason in each case, whether the simultaneous equations
\[\begin{split} \begin{array}{l} a x + 4y + 2z= 3a\\ x + a y = 1\\ x + 2y + z = 3\\ \end{array} \end{split}\]have any solutions when:
\(a = 3\);
\(a = 2\)
The matrix \(D\) is given by \(D = \begin{pmatrix} a & 2 & 0\\ 3 & 1 & 2\\ 0 & -1 & 1\end{pmatrix}\) where \(a\ne 2\).
Find \(D^{-1}\).
Hence or otherwise, solve the equations:
\[\begin{split} \begin{array}{l} a x + 2y = 3\\ 3x + y + 2z = 4\\ - y + z = 1\\ \end{array} \end{split}\]