Maths saves lives
Operational research for healthcare

School of Mathematics
Vince Knight
Data

<table>
<thead>
<tr>
<th></th>
<th>Sex</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M</td>
<td>187.306088</td>
<td>72.233276</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>170.595112</td>
<td>92.195728</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>157.637346</td>
<td>64.835601</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>162.010640</td>
<td>130.462244</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>154.017198</td>
<td>81.568846</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Data

<table>
<thead>
<tr>
<th></th>
<th>Sex</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M</td>
<td>187.306088</td>
<td>72.233276</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>170.595112</td>
<td>92.195728</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>157.637346</td>
<td>64.835601</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>162.010640</td>
<td>130.462244</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>154.017198</td>
<td>81.568846</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

```python
>>> import scipy.stats

>>> ttest = scipy.stats.ttest_ind(
...     df[df['Sex']=='M']['Height'],
...     df[df['Sex']=='F']['Height'])

>>> ttest.pvalue
0.070033630470421021
```
Examples
(Geraint Palmer)
Optimisation

<table>
<thead>
<tr>
<th>Shift</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurses</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Full Time

- £7.50 per hour
- 4hrs, 1hr break, 3hrs

Part Time

- £8 per hour
- 4hrs
Optimisation

<table>
<thead>
<tr>
<th>Shift</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurses</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Full Time

- 3
- £7.50 per hour
- 4hrs, 1hr break, 3hrs

Part Time

- 12
- £8 per hour
- 4hrs
Queueing Theory

every time unit → □□□□□ → every time unit
Realistic (stochastic) queue

Time units: 0 20 40 60 80 100

Total time: 0
Service time: 250 500 750 1000 1250 1500 1750

Total time: 100
Service time: 20 40 60 80 100
Dynamical Systems

Susceptible → Infectious → Infected → Recovered

Infectious rate

Recovery rate
Game Theory

Hospital 1

≥ K_1?

Divert

Hospital 2

≥ K_2?

Divert
Partnerships
Welsh Ambulance Service Trust
Ambulance allocation for maximal survival with heterogeneous outcome measures V.A. Knight, P.R. Harper, L. Smith (2012) \textit{Omega}
University Hospital of Wales (UHW)
How efficient can an emergency unit be? A perfect world model. Kesh Baboolal, Jeff D Griffiths, Vincent A Knight, Andrew V Nelson, Cheryl Voake, Janet E Williams (2012) EMJ
Aneurin Bevan University Health Board
M.Sc.
- knightva@cardiff.ac.uk
- harper@cardiff.ac.uk
- emeryjl4@cardiff.ac.uk