Evolutionary Game Theory

Vince Knight

Vince Knight Evolutionary Game Theory

PRIFYSGOL CAERDY

Vince Knight Evolutionary Game Theory

Two Thirds of the Average

- Pick an integer between 0 and 100 (inclusive);
- Closest to two thirds of the average of all picked numbers wins.

Fitted line: y = 0.22x + 10.09

Definition

Considering an infinite population of individuals each of which represents an action from \mathcal{A} , we define the population profile as a vector $x \in [0, 1]_{\mathbb{R}}^{|\mathcal{A}|}$. Note that:

$$\sum_{i\in\mathcal{A}}x_i=1$$

Definition

The population dependent fitness of an individual of type *i* in a population *x* is denoted as $f_i : \mathbb{R}^{101}_{[0,1]} \to \mathbb{R}$.

Definition

Replicator Dynamics Equation

$$rac{dx_i}{dt} = x_i(f_i(x) - \phi)$$
 for all i

where:

$$\phi = \sum_{i=0}^{N} x_i f_i(x)$$

Vince Knight Evo

Evolutionary Game Theory

We see that over time, the population emerges to all guessing 1. So everyone wins.

Note that everyone guessing 0 also is stable.

Vince Knight

Evolutionary Game Theory

John Maynard-Smith¹ (1920 - 2004)

By Web of Stories - Web of Stories, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20096037

¹J.M. Smith. *The Theory of Evolution*. A Pelican original. Penguin, 1977. ISBN: 9780140204339.

Definition

In a population game when considering a pairwise contest game we assume that individuals are randomly matched and play some game with utility matrices A, A^{T} . For a population profile x this gives a compact expression for the fitness:

f = Ax

Definition

In a pairwise interaction game the fitness of a strategy σ in a population x is given by:

$$u(\sigma, x) = \sum_{i=1}^{|\mathcal{A}|} \sigma_i f_i(x)$$

Definition

A strategy σ^* is called an **Evolutionary Stable Strategy** if there exists an $0 < \bar{\epsilon} < 1$ such that for every $0 < \epsilon < \bar{\epsilon}$ and every $\sigma \neq \sigma^*$ σ^* is:

$$u(\sigma^*, x_{\epsilon}) > u(\sigma, x_{\epsilon})$$

Where x_{ϵ} is the post entry population where a proportion ϵ of the population are σ .

Theorem

If σ^* is an ESS in a pairwise contest population game then for all $\sigma \neq \sigma^*$: 1. $u(\sigma^*, \sigma^*) > u(\sigma, \sigma^*)$ OR 2. $u(\sigma^*, \sigma^*) = u(\sigma, \sigma^*)$ and $u(\sigma^*, \sigma) > u(\sigma, \sigma)$ Conversely, if either (1) or (2) holds for all $\sigma \neq \sigma^*$ in a two player normal form game then σ^* is an ESS.

An evolutionary game theoretic model of rhino horn devaluation^a

^aNikoleta E. Glynatsi, Vincent Knight, and Tamsin E. Lee. "An evolutionary game theoretic model of rhino horn devaluation". In: *Ecological Modelling* 389 (2018), pp. 33–40. ISSN: 0304-3800.

nashpy.readthedocs.io knightva@cardiff.ac.uk