Tin Can Example - Writing & Mathematical Notation

QUESTION:

Consider a cylindrical tin can with radius r and height h. Let its volume V be non-zero and fixed. Find the relationship between h and r such that the surface area of the tin can is minimised.

SOLUTION:

First, let r be the radius of the cylinder, h be its height, and V be its volume. We have expressions for the tin's volume and surface area:

$$V = \pi r^2 h$$
$$S = 2\pi r^2 + 2\pi r h$$

As the volume V is fixed, then we have a relationship between r and h that is dependant on V:

$$V = \pi r^2 h$$
$$\frac{V}{\pi r^2} = h$$

Therefore the surface area now becomes a function of V and r:

$$S = 2\pi r^2 + 2\pi r h$$
$$= 2\pi r^2 + 2\pi r \left(\frac{V}{\pi r^2}\right)$$
$$= 2\pi r^2 + \frac{2V}{r}$$

The surface area is minimised when its derivative is equal to zero:

$$0 = \frac{dS}{dr}$$
$$= 4\pi r - 2Vr^{-2}$$

Then solving gives \tilde{r} , the value of r that minimises the surface area, in terms of V:

$$4\pi \tilde{r} - \frac{2V}{\tilde{r}^2} = 0$$

$$4\pi \tilde{r} = \frac{2V}{\tilde{r}^2}$$

$$4\pi \tilde{r}^3 = 2V$$

$$\tilde{r}^3 = \frac{V}{2\pi}$$

$$\tilde{r} = \sqrt[3]{\frac{V}{2\pi}}$$

However, as mentioned above, the volume V is fixed, and is itself a function of r and h. Substituting this in gives an implicit relationship between \tilde{r} and h:

$$\tilde{r} = \sqrt[3]{\frac{V}{2\pi}}$$

$$= \sqrt[3]{\frac{\pi \tilde{r}^2 h}{2\pi}}$$

$$= \sqrt[3]{\frac{\tilde{r}^2 h}{2}}$$

Solving for either \tilde{r} or h will give an explicit relationship between \tilde{r} and h, as required.

$$\tilde{r} = \sqrt[3]{\frac{\tilde{r}^2 h}{2}}$$

$$\tilde{r}^3 = \frac{\tilde{r}^2 h}{2}$$

$$2\tilde{r}^3 = \tilde{r}^2 h$$

$$2\tilde{r} = h$$

Therefore, for a fixed non-zero volume cylinder, the relationship between the radius r and height h that minimised the surface area is h=2r.