
An overview of quality
assurance practices in
computational research.
Testing methods in
research software.
Vince Knight, Oliver Laslett, Steven Lammerton, James Davenport, James
Hetherington
Collaborations Workshop 2016

March 26, 2016

1 This page is about Testing In Research
The paper can be read or downloaded

2 An overview of quality assurance practices in computational re-
search

Authors: James Davenport, Steven Lamerton, Oliver Laslett, Vincent Knight, James Hetherington
Abstract: Research software has fundamentally di�erent life cycles from commercial software. While this is

(implcitly) recognised by authors and funders, its implications for the testing regime have not been clearly articulated.
Here the authors from several UK research institutions have pooled their views on the testing strategies appropriate
to research software at various stages of its evolution. What is su�cient for a program being used by one reserach
student to underpin a thesis is probably insu�cient for a program being used by many people, most of whom never
read the source, in many institutons, on a wide range of computers.

In [1]: import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
from matplotlib import animation

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
warnings.warn(’Matplotlib is building the font cache using fc-list. This may take a moment.’)

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
warnings.warn(’Matplotlib is building the font cache using fc-list. This may take a moment.’)

1

TestingPaper.html

2.0.1 Floating Point and Testing

Nearly all computational research is done using the �oating-point arithmetic supplied by the vendor. These days
this is normally assumed to conform to the IEEE (binary) �oating point system [?], which speci�es the results of
a sequence of �oating-point operations. This actually does simplify the developers’ life (compared to the days of
negotiating hexadecimal-based IBM formats etc.), but does not mean that there are no problems with the �oating
point.

• Floating-pont may not produce the expected results:

(
1 + 1020

)
− 1020 = 1020 − 1020 = 0, (1)

not the 1 one might expect. Of course,

1 +
(
1020 − 1020

)
= 1 + 0 = 1. (2)

• [?] does specify the result of a sequence of �oating-point operations, but the user may not! In particular, in
most programming languages,

1 + 1020 − 1020 (3)

is ambiguous as to whether it is (1) or (2), and therefore the compiler is free to produce 1 or 0. In practice, of
course, the code will not be (3) but !a+b+c!, and indeed !a! etc. will probably be array elements, or expressions
themselves. A slight change in a etc., or indeed in the surrounding program, can change which order the compiler
chooses to do the additions in, and, as we have seen, change the result.

2.0.2 Property based testing

In [?] a novel testing approach was described: property based testing. Claessen and Hughes describe a Haskell
package QuickCheck that allows for the testing of functions under random inputs. In this instance it is often not
the exact output that gets tested but the “property” of the output (thus where the name of this paradigm originates).
Since this initial work some further property based testing has been provided. In [?] a mechanism of shrinking
(implemented in Quviq QuickCheck) of failed test cases is described: when a given set of inputs is found that fails
a test it is shrunk to it a simplest form that still fails the test. As failing parameters are of course reported: this aids
in debugging. Other similar yet adjacent testing frameworks are described in [?, ?], these include testing of storage
as well as exhaustive parameter testing.

In Python an implementation of property based testing is implemented in the hypothesis library [?]. This im-
plements shrinking as described above. As an example let us consider the following function which implements the
following (erroneous) property of a number that is divisible or not by 11:

“ A number is divisible by 11 if and only if the alternating (in sign) sum of the number’s digits is 0.

”As an example consider 121, the alternating sum is: 1− 2 + 1 = 0 and indeed 121 = 11× 11.

In [2]: def divisible_by_11(number):
"""Uses above criterion to check if number is divisible by 11"""
string_number = str(number)
alternating_sum = sum([(-1) ** i * int(d) for i, d

in enumerate(string_number)])
return alternating_sum == 0

In [3]: import unittest

class TestDivisible(unittest.TestCase):

2

def test_divisible_by_11(self):

for k in range(10):
self.assertTrue(divisible_by_11(11 * k))
self.assertFalse(divisible_by_11(11 * k + 1))

Some more examples
self.assertTrue(divisible_by_11(121))
self.assertTrue(divisible_by_11(12122))

self.assertFalse(divisible_by_11(123))
self.assertFalse(divisible_by_11(12123))

TestDivisible().test_divisible_by_11()

Running the above gives no failures. Below implements a basic hypothesis test:

In [4]: from hypothesis import given # This is how we will define inputs
from hypothesis.strategies import integers # This is the type of input we will use

class TestDivisible(unittest.TestCase):

@given(k=integers(min_value=1)) # This is the main decorator
def test_divisible_by_11(self, k):

self.assertTrue(divisible_by_11(11 * k))

TestDivisible().test_divisible_by_11()

Falsifying example: test_divisible_by_11(self=<__main__.TestDivisible testMethod=runTest>, k=19)

AssertionError Traceback (most recent call last)

<ipython-input-4-94cf3652c375> in <module>()
8 self.assertTrue(divisible_by_11(11 * k))
9

---> 10 TestDivisible().test_divisible_by_11()

<ipython-input-4-94cf3652c375> in test_divisible_by_11(self)
5
6 @given(k=integers(min_value=1)) # This is the main decorator

----> 7 def test_divisible_by_11(self, k):
8 self.assertTrue(divisible_by_11(11 * k))
9

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/hypothesis/core.py in wrapped_test(*arguments, **kwargs)
538 reify_and_execute(
539 search_strategy, test,

--> 540 print_example=True, is_final=True
541))
542 except (UnsatisfiedAssumption, StopTest):

3

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/hypothesis/executors.py in default_new_style_executor(data, function)
55
56 def default_new_style_executor(data, function):

---> 57 return function(data)
58
59

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/hypothesis/core.py in run(data)
101 lambda: ’Trying example: %s(%s)’ % (
102 test.__name__, arg_string(test, args, kwargs)))

--> 103 return test(*args, **kwargs)
104 return run
105

<ipython-input-4-94cf3652c375> in test_divisible_by_11(self, k)
6 @given(k=integers(min_value=1)) # This is the main decorator
7 def test_divisible_by_11(self, k):

----> 8 self.assertTrue(divisible_by_11(11 * k))
9

10 TestDivisible().test_divisible_by_11()

/home/travis/miniconda2/envs/build-pages/lib/python3.5/unittest/case.py in assertTrue(self, expr, msg)
675 if not expr:
676 msg = self._formatMessage(msg, "%s is not true" % safe_repr(expr))

--> 677 raise self.failureException(msg)
678
679 def _formatMessage(self, msg, standardMsg):

AssertionError: False is not true

An error is returned and hypothesis identi�es that k = 19 gives a failure. Indeed: 19× 11 = 209. This indicates
that our original property for divisibility by 11 does not hold, some basic algebra would con�rm this, giving:

“ A number is divisible by 11 if and only if the alternating (in sign) sum of the number’s digits is
divisible by 11. ”This can be implemented in python using:

In [5]: def divisible_by_11(number):
"""Uses above criterion to check if number is divisible by 11"""
string_number = str(number)
Using abs as the order of the alternating sum doesn’t matter.
alternating_sum = abs(sum([(-1) ** i * int(d) for i, d

in enumerate(string_number)]))
Recursively calling the function
return (alternating_sum in [0, 11]) or divisible_by_11(alternating_sum)

Rerunning the tests gives no failures:

4

In [6]: class TestDivisible(unittest.TestCase):

@given(k=integers(min_value=1)) # This is the main decorator
def test_divisible_by_11(self, k):

self.assertTrue(divisible_by_11(11 * k))

TestDivisible().test_divisible_by_11()

2.1 Continuous Integration
Continuous integration is a development process where code is frequently integrated on a central continuous in-
tegration server. This centralisation allows the automation of a variety of quality assurance processes such as the
building of the codebase, running of tests, checking of performance and the execution of static analysis tools. By
monitoring the revision control system the server can automatically run these operations as the code is changed,
giving rapid feedback to the developer. Generally these systems give a web interface to view the output of the build
jobs and are also extensible to allow general automation, for example the production of tarballs or other packages for
formal software release. For example this paper and its associated website are built using a continuous integration
server as changes are made to the underlying content.

A number of open source and commercial continuous integration servers are available, both hosted and for
self hosting. Travis CI is one of the most popular hosted options and has tight integration with the GitHub code
repository. Jenkins is the most popular of the open source, self-hosted options and has a large community writing
plugins to further extend the functionality.

2.2 Visualisation based Testing
When testing scienti�c code, it helps to put e�ort into visualisations which allow you to see the behaviour of the
calculation, and make it easy to regenerate these visualisations with just one command.

This brings the automated nature of assertion based testing to the full information-transmission “bandwidth” of
the visual display of quantitative information.

For example, in Jupyter, we can see that an implementation of Conway’s game of life is working using an em-
bedded animation:

In [7]: class Life(object):
def __init__(self, sizex, sizey=None):

self.sizex = sizex
self.sizey = sizey or sizex
self.current = np.zeros([self.sizex, self.sizey]).astype(bool)

def randseed(self, thresh=0.6):
self.current = (np.random.rand(self.sizex, self.sizey)>thresh)

def glide(self, offset=0):
coords = [[2,0],[2,1],[2,2],[1,2],[0,1]]
for x,y in coords:

self.current[x+offset, y+offset]=True

def step(self):
neighbourhood_pop = np.copy(self.current).astype(int)
up = np.roll(self.current, 1, axis=0).astype(int)
down = np.roll(self.current, -1, axis=0).astype(int)
right = np.roll(self.current, 1, axis=1).astype(int)
left = np.roll(self.current, -1, axis=1).astype(int)
upleft = np.roll(up, -1, axis=1)
upright = np.roll(up, 1, axis=1)

5

https://travis-ci.org/drvinceknight/TestingPaper
https://travis-ci.org/drvinceknight/TestingPaper
https://travis-ci.org/
http://jenkins-ci.org/

downleft = np.roll(down, -1, axis=1)
downright = np.roll(down, 1, axis=1)
self.neighbourhood_pop = (up + down + right + left +

upleft + upright + downleft + downright)

self.next = np.logical_or(np.logical_or(np.logical_and(self.current, self.neighbourhood_pop==2),
np.logical_and(self.current, self.neighbourhood_pop==3)),
np.logical_and(np.logical_not(self.current), self.neighbourhood_pop==3))

self.current = self.next

In [8]: model = Life(50)
model.glide(10)
figure = plt.figure()
axes = plt.axes()
image = axes.imshow(model.current, cmap=’Greys’, interpolation=’nearest’, animated = True)

In [9]: def animate(frame):
image.set_array(model.current)
model.step()

anim=animation.FuncAnimation(figure, animate,
frames=200, interval=20, blit=True)

from JSAnimation import IPython_display
anim

TypeError Traceback (most recent call last)

6

<ipython-input-9-b0d674f2e2b4> in <module>()
4
5 anim=animation.FuncAnimation(figure, animate,

----> 6 frames=200, interval=20, blit=True)
7 from JSAnimation import IPython_display
8 anim

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in __init__(self, fig, func, frames, init_func, fargs, save_count, **kwargs)
1163 self._save_seq = []
1164

-> 1165 TimedAnimation.__init__(self, fig, **kwargs)
1166
1167 # Need to reset the saved seq, since right now it will contain data

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in __init__(self, fig, interval, repeat_delay, repeat, event_source, *args, **kwargs)
1007
1008 Animation.__init__(self, fig, event_source=event_source,

-> 1009 *args, **kwargs)
1010
1011 def _step(self, *args):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in __init__(self, fig, event_source, blit)
634 self._stop)
635 if self._blit:

--> 636 self._setup_blit()
637
638 def _start(self, *args):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _setup_blit(self)
905 self._resize_id = self._fig.canvas.mpl_connect(’resize_event’,
906 self._handle_resize)

--> 907 self._post_draw(None, self._blit)
908
909 def _handle_resize(self, *args):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _post_draw(self, framedata, blit)
870 self._blit_draw(self._drawn_artists, self._blit_cache)
871 else:

--> 872 self._fig.canvas.draw_idle()
873
874 # The rest of the code in this class is to facilitate easy blitting

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/backend_bases.py in draw_idle(self, *args, **kwargs)
2024 if not self._is_idle_drawing:
2025 with self._idle_draw_cntx():

-> 2026 self.draw(*args, **kwargs)
2027

7

2028 def draw_cursor(self, event):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py in draw(self)
472
473 try:

--> 474 self.figure.draw(self.renderer)
475 finally:
476 RendererAgg.lock.release()

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
59 def draw_wrapper(artist, renderer, *args, **kwargs):
60 before(artist, renderer)

---> 61 draw(artist, renderer, *args, **kwargs)
62 after(artist, renderer)
63

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/figure.py in draw(self, renderer)
1163
1164 self._cachedRenderer = renderer

-> 1165 self.canvas.draw_event(renderer)
1166
1167 def draw_artist(self, a):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/backend_bases.py in draw_event(self, renderer)
1807 s = ’draw_event’
1808 event = DrawEvent(s, self, renderer)

-> 1809 self.callbacks.process(s, event)
1810
1811 def resize_event(self):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/cbook.py in process(self, s, *args, **kwargs)
561 for cid, proxy in list(six.iteritems(self.callbacks[s])):
562 try:

--> 563 proxy(*args, **kwargs)
564 except ReferenceError:
565 self._remove_proxy(proxy)

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/cbook.py in __call__(self, *args, **kwargs)
428 mtd = self.func
429 # invoke the callable and return the result

--> 430 return mtd(*args, **kwargs)
431
432 def __eq__(self, other):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _start(self, *args)
646
647 # Now do any initial draw

8

--> 648 self._init_draw()
649
650 # Add our callback for stepping the animation and

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _init_draw(self)
1191 # artists.
1192 if self._init_func is None:

-> 1193 self._draw_frame(next(self.new_frame_seq()))
1194
1195 else:

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _draw_frame(self, framedata)
1212 self._drawn_artists = self._func(framedata, *self._args)
1213 if self._blit:

-> 1214 for a in self._drawn_artists:
1215 a.set_animated(self._blit)

TypeError: ’NoneType’ object is not iterable

The point of this is to build your visualisation infrastructure early, along with the code, as it allows a much more
�uent understanding of any problems than debugging through print statements or debuggers.

Tools such as Paraview and Visit are very helpful here.

2.3 Testing Invariants and Conservation Laws
If it is too hard to manually build a �xture, we can test on a dervied property of the calculation which we know.
This could be a derivative of a function in the code with respect to one of its parameters, or a conservation law for
a simulation.

In [10]: def yield_count_conway(limit):
model = Life(50)
model.glide(10)
for _ in range(limit):

yield np.sum(model.current)
model.step()

In [11]: list(yield_count_conway(5))

Out[11]: [5, 5, 5, 5, 5]

In [12]: def test_conserved_conway():
for total in yield_count_conway(200):

assert total==5

test_conserved_conway()

2.4 Testing Parallelism through Multiple Class Instances
When testing distributed memory parallelisation, we have found it helpful to write tests to validate separately the
decomposition of the problem and communication between processes, and the use of the parallel framework such
as MPI.

Thus, a serial code which achieves, for example, a halo swap, between multiple instances of the class, can be
tested without parallelism to validate the bookkeeping

9

In [13]: class OneDHaloLife(Life):
def __init__(self, size):

super(OneDHaloLife,self).__init__(size+2, size)

def add_right_neighbour(self, neigh):
self.right = neigh
neigh.left = self

def add_left_neighbour(self, neigh):
self.left = neigh
neigh.right = self

def swap(self):
self.current[-1,:] = self.right.current[1,:]
self.current[0,:] = self.left.current[-2,:]

In [14]: modelA = OneDHaloLife(50)
modelB = OneDHaloLife(50)
modelA.glide(20)

modelA.add_right_neighbour(modelB)
modelA.add_left_neighbour(modelB)

figure = plt.figure()
axes = plt.axes()
image = axes.imshow(np.vstack([modelA.current, modelB.current]),

cmap=’Greys’, interpolation=’nearest’, animated = True)

In [15]: def animate(frame):
image.set_array(np.vstack([modelA.current, modelB.current]))

10

modelA.swap()
modelB.swap()
modelA.step()
modelB.step()

In [16]: from matplotlib import animation
anim=animation.FuncAnimation(figure, animate,

frames=250, interval=20, blit=True)
from JSAnimation import IPython_display
anim

TypeError Traceback (most recent call last)

<ipython-input-16-c56b02077b7d> in <module>()
1 from matplotlib import animation
2 anim=animation.FuncAnimation(figure, animate,

----> 3 frames=250, interval=20, blit=True)
4 from JSAnimation import IPython_display
5 anim

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in __init__(self, fig, func, frames, init_func, fargs, save_count, **kwargs)
1163 self._save_seq = []
1164

-> 1165 TimedAnimation.__init__(self, fig, **kwargs)
1166
1167 # Need to reset the saved seq, since right now it will contain data

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in __init__(self, fig, interval, repeat_delay, repeat, event_source, *args, **kwargs)
1007
1008 Animation.__init__(self, fig, event_source=event_source,

-> 1009 *args, **kwargs)
1010
1011 def _step(self, *args):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in __init__(self, fig, event_source, blit)
634 self._stop)
635 if self._blit:

--> 636 self._setup_blit()
637
638 def _start(self, *args):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _setup_blit(self)
905 self._resize_id = self._fig.canvas.mpl_connect(’resize_event’,
906 self._handle_resize)

--> 907 self._post_draw(None, self._blit)
908
909 def _handle_resize(self, *args):

11

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _post_draw(self, framedata, blit)
870 self._blit_draw(self._drawn_artists, self._blit_cache)
871 else:

--> 872 self._fig.canvas.draw_idle()
873
874 # The rest of the code in this class is to facilitate easy blitting

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/backend_bases.py in draw_idle(self, *args, **kwargs)
2024 if not self._is_idle_drawing:
2025 with self._idle_draw_cntx():

-> 2026 self.draw(*args, **kwargs)
2027
2028 def draw_cursor(self, event):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py in draw(self)
472
473 try:

--> 474 self.figure.draw(self.renderer)
475 finally:
476 RendererAgg.lock.release()

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/artist.py in draw_wrapper(artist, renderer, *args, **kwargs)
59 def draw_wrapper(artist, renderer, *args, **kwargs):
60 before(artist, renderer)

---> 61 draw(artist, renderer, *args, **kwargs)
62 after(artist, renderer)
63

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/figure.py in draw(self, renderer)
1163
1164 self._cachedRenderer = renderer

-> 1165 self.canvas.draw_event(renderer)
1166
1167 def draw_artist(self, a):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/backend_bases.py in draw_event(self, renderer)
1807 s = ’draw_event’
1808 event = DrawEvent(s, self, renderer)

-> 1809 self.callbacks.process(s, event)
1810
1811 def resize_event(self):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/cbook.py in process(self, s, *args, **kwargs)
561 for cid, proxy in list(six.iteritems(self.callbacks[s])):
562 try:

--> 563 proxy(*args, **kwargs)
564 except ReferenceError:

12

565 self._remove_proxy(proxy)

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/cbook.py in __call__(self, *args, **kwargs)
428 mtd = self.func
429 # invoke the callable and return the result

--> 430 return mtd(*args, **kwargs)
431
432 def __eq__(self, other):

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _start(self, *args)
646
647 # Now do any initial draw

--> 648 self._init_draw()
649
650 # Add our callback for stepping the animation and

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _init_draw(self)
1191 # artists.
1192 if self._init_func is None:

-> 1193 self._draw_frame(next(self.new_frame_seq()))
1194
1195 else:

/home/travis/miniconda2/envs/build-pages/lib/python3.5/site-packages/matplotlib/animation.py in _draw_frame(self, framedata)
1212 self._drawn_artists = self._func(framedata, *self._args)
1213 if self._blit:

-> 1214 for a in self._drawn_artists:
1215 a.set_animated(self._blit)

TypeError: ’NoneType’ object is not iterable

2.5 Testing documentation
Documentation is universally accepted as a fundamental part of software development [?, ?]. However, documenta-
tion should be thought of as a potential source for bugs as much as the source code itself. It is very easy to change
a feature in the course code, very and adjust the testing framework but forget to update the documentation for a
feature change.

Thus, it is important to incorporate a test of the documentation. Python has a framework entitled doctest
which will parse any �le for >>> and ... and will run the associated code checking that the asserted output is
obtained. This is how documentation could be written for the divisible_by_11 function written earlier:

When running our function on the first 10 numbers divisible by 11 we get:

>>> for k in range(10):
... print(divisible_by_11(11 * k))
True
True
True

13

True
True
True
True
True
True

To run the above (assuming it’s saved in a doc.rst �le) we use: python -m doctest cod.rst. Doc
tests can be incorporated with any of the previously mentioned paradigms.

2.6 Conclusions
In [17]:

3 Technical details of how this collaborative paper was written

3.1 Jupyter Notebooks
The paper is written in a Jupyter notebook and then magic happens to render it. (James H to add details).

3.2 Version control of the Jupyter Notebook
We tried using Cloud.sagemath to work collaboratively in real time on the notebook. All commits for the notebook
are done on cloud.sagemath: they are in e�ect being done by a single user but multiple authors using:

$ git commit --author="XXX..."

Some issues, there are other options

3.3 Continuous deployment
Inside Travis on every push:

• execute the notebooks (check for failures)
• nbconvert for pdf and html
• jekyll to build site
• pushes to gh-pages

Most recent available to all, open source, creative commons

3.4 Structure your repository
Open source means that anybody can contribute. We used two branches:

• pull request on master to add content
• the gh-pages serves the published content

In [1]:

14

cloud.sagemath.com

	This page is about Testing In Research
	An overview of quality assurance practices in computational research
	Floating Point and Testing
	Property based testing

	Continuous Integration
	Visualisation based Testing
	Testing Invariants and Conservation Laws
	Testing Parallelism through Multiple Class Instances
	Testing documentation
	Conclusions

	Technical details of how this collaborative paper was written
	Jupyter Notebooks
	Version control of the Jupyter Notebook
	Continuous deployment
	Structure your repository

