1 Chapter 1 - Introduction

1.1 The Environment

SAS may be run in a variety of modes, on this course we will concentrate on
the interactive mode which allows users to submit selected portions of SAS
code through a graphical user interface (GUI). When opening SAS a variety
of windows immediately become visible as shown. Note that the screenshots
and accompanying screen casts for this course were produced with SAS 9.3
running on ubuntu 11.10. The look and feel on other operating systems will
differ slightly.

Explorer window Results window

Command window

Output window

Editor window

Log window
The visible windows are:
1. The explorer window
2. The results window

3. The command window



4. The output window
5. The log window

6. The editor window

We write code directly in the editor window and the roles of the other windows
will become clear shortly.

1.2 Libraries

The major strength of SAS is its ability to handle huge data sets. SAS does this
by storing files in a particular format in spaces called libraries. SAS libraries
are important. SAS manipulates data sets once they are converted to SAS data
files. These data files are saved in libraries in SAS. They work just like folders
(apart from not being able to nest further libraries). If you click on the libraries
tab in the explorer window (as shown in in the screenshot) you should see the
libraries available to you (as shown in the other screenshot).



Libraries

SAS: Explorer

§plutions

ile Edit View Tools Help

Libraries
File Shortcuts
Gﬁ Favorite Folders

SAS: Explorer

File Edit View Tools Solutions Help

S
o

Maps

Mapegfk
Mapsesas
Sashelp
Easuser

Work




On my system SAS has already created 6 libraries (this might differ on other
versions and operating systems). The Work library which SAS automatically
uses if no library is specified (more on this later, it’s basically the default library).
A very important fact about the Work library is that it is temporary. When
SAS is shut down, all the contents of the Work library are deleted. Keeping this
in mind, let’s move on to creating a new library.

1.2.1 Creating a new library

To create a new library, left click in the explorer window and select “New...”.
You will see a new window appear as shown. Simply browse to the location on
your computer at which you’d like your new library to be stored. Note also to
click the “Enable at startup” option which ensures that SAS remembers this
library the next time you open up SAS; if this is not selected, the link to the
library created will be temporary (and erased when SAS is shut down). Finally
make sure you name your library obeying the following rules (for the rest of the
notes, I’ll assume the library name for this course is mat013):

1. be less than or equal to 8 characters

2. must begin with an underscore or letter

3. remaining characters can be letters, numbers or underscores

Now that we have a library let’s import some datal!

1.3 Importing Data

There are two main ways to import data into SAS:

1. Direct input

2. Importing an external data set (xls, csv etc...)

In practice you will never use the direct input method but let’s take a look
for completeness (although it is very useful when wanting to quickly test a few
things). This will also give us our first experience of the editor window!

Let us create a data set named first_data_set, put it in the mat013 library
and include the following data:

Name, Age
Bob, 23
Billy,25



SAS: New Library

Figure 1: New library window



To do so, write the following code in the editor window:

data mat013.first_data_set;
input Name $ Age;

cards;

Bob 23

Billy 25

run;

Let’s take a look at the screenshot. First of all we see that the program editor
automatically includes some syntax colouring (i.e. changes the colour of some
of the words that it recognises). In blue in the editor window are the SAS
keywords:

1. data which tells SAS that we’re about to write a data step which we’ll
look at a bit closer in the Chapter 3. The keyword data is always followed
by the library and the data file (separated by a .) we’re creating. If no
library is given then SAS will put this file in the Work library.

2. input which tells SAS that we’re going to input raw data and what follows
is the name of the variables. If a variable is a string then we must include
a \$ after the variable name.

3. cards which is the SAS keyword that precedes the raw data. All the
entries must be on separate rows.

4. run which is the keyword that tells SAS where the statement ends.

An important thing to remember is that a SAS statement always ends with a
;. Forgetting the ; is a common source of mistakes (and headaches).

The library

The keyword "data”. The name of the dataset you are creating

The raw data

The keyword “input”
which tells SAS that the
variable names are
going to follow.

The keyword “cards"
that tells SAS that the
raw data is about to
follow.

The second variable
name "Age"”.

The first wvariable name
The keyword “run” "Name" followed by a "$" to

tell SAS that this is a string.

We run this code by highlighting it and pressing the ‘running man’, clicking on



run (or pressing F8 on Windows). It is good practice to always check the log
window as soon as any code is run. In the screenshot we see that the log looks
good (lines 1-7 don’t show any errors) and simply gives some details as to the
running of the program.

SAS: Log-Untitled

File Edit WView Tools Solutions Help

| real time 0.77 seconds :ﬂ
cpu time 0.16 seconds
1 data MAT008.first_data_set;
input Name § Age;
3 cards;

NOTE: The data set MATO0E.FIRST DATA SET has 2 observation
NOTE: DATA statement used (Total process time):

real time 0.10 seconds

cpu time 0.02 seconds
6 ;
7 run; ¥
N ] >

If we now look at the mat013 library in the explorer pane we can see the new
data set is in there, double clicking on the data set opens it up.



SAS: Explorer

File Edit View Tools Solutions Help

% Firs t data set

SAS: VIEWTABLE: Mat008.First_data_set
File Edit View Tools Data Solutions

Help

NOTE: Table has been opened in browse mode.




Using direct input is of course not at all realistic when trying to import larger
data sets.

Often large data sets will be saved in comma-separated values (csv) format
which can be read by most (all?) software. We will import the data set shown
(here viewed in a simple text editor).

-~ -

JJl.csv (~) - VIM

Name ,Age,Sex ,Height in Metres,Weight in Kg,Home Postcode,Savings in Pounds,Random Number
Dhn,lS,M_.'L?Z,?],CFEﬂ 3AG,1000,336.8041790091

Jo,14,M,1.85,73,CF27 4HL,500,757.197195664

Ji11,21,F,1.57,49,5W6 4JL,357,458.5039406084

]Ultét,lS,F,l.b2,45,CF14 7BR,930,977

Jackie,3,F,1.65,60,NP24 3AG,10,564.2944280989
Julien,37,M,2.01,100,NP24 3AG,102930,583.125016652
Joe,19,M,1.92,75,NP7 5BD,2930,206.9145319983
Jeremiah,39,M,1.54,70,NP15 1AE,84953,41.0423562862
Jim,17,M,1.73,83,CF35 5AS,470320,985.9272670001
Julie,?,F,1.62,45, CF72 81Y,1.5,327.5803755969
Jo,7,F,1.62,51, CF72 9DP,200,50.6616821513

We will import this data set in to the mat013 library and call it JJJ using the
following code:

proc import datafile="~/JJJ.csv"
out=mat013.JJJ
dbms=csv
replace;
getnames=yes;
run;

Let’s take a look at the screenshot shown. We again see that the program editor
automatically includes some syntax colouring (i.e. changes the colour of some
of the words that it recognises). In blue in the editor window are the SAS
keywords:

1. proc which tells SAS that we're about to write a ‘procedure step’ which
we’ll look at a bit closer in the next chapter. The proc keyword is al-
ways followed by the name of the particular procedure we're going to
use. In this case: import, which is then followed by the statement
datafile=path-to-datafile. Following this are various options relat-
ing to the import statement.

2. out - this tells SAS the name of the SAS datafile created from the imported
file.

3. dbms - this tells SAS the type of file being imported (in our case csv, but
can be d1lm, x1s, etc.). Note that this is not necessary if SAS can recognise
the file extension.



4. replace - this tells SAS to replace any SAS datafiles with the same name
as specified by out.

5. getnames=yes which, although this is not a SAS keyword, it is a special
option for the import statement that allows you to tell SAS to get the
variable names from the first row of your external data file.

6. run is the keyword that tells SAS where the statement ends.

The procedure used: “import"
The keyword "proc”

The location of the external file we want to import.

5AS: ProgramEditor-Untitled

Toole Run Soluj

The name of the

SAS datafile we are ——-—‘:&;{‘:Zm:':ﬁ;f,,?:““hh_ e | The file type we are importing.
creating. 10003 dbme = vegf— Note that this is not necessary
00004graplace; as SAS will recognise the
garnamantyes [N extension of the external file.
The "replace” option 3 run
that tells SAS to 1

overwrite  existing o m
datasets with the

same name. The keyword "run” Thg "getnames=yes" option
which tells SAS to read the
first row of the data file for the
variable names.

Running the code in the same way as before (highlighting and F8) will create
the required datafile as shown.

10



SAS: Explorer

File Edit View Tools Solutions Help

Firs t_da ta_set

J33

File Edit View Tools Data Solutiens Help
HGTE: Table hae bean opensd in browss mode.
H CFa4 JAG 1000 336.00417901
70 1 106 73 | eFat nL 500 16719719668
7111 e 1,87 49 | 86 4L 157 156,50194061
Jaman 2| 1.59 58 | WS 3L 10930 565.9515243
Janny u|r 1.63 70 | mmal dvn 465029 206, 14460187
Julist 15 L 1.62 LL] CF14 TRR 0 §77.93232770
Jackie [ 1,65 60 | NPR4_JAG 1o 564,2944201
Julien 7 n 2.0 100 | wp24 dag 102930 682.12601665
Joa 19 | L 1.92 % | NPT GBD %30 A06.914632
Jaramiah 9N 1,54 70 | NP1S 1AB 4953 11, 042356286
Jim 17 | 113 83 | cras sas 470320 985.937267
Julie G 1.62 45 | A criz oy 1.5 327,5001756
Ja 1F 1.62 51 | A cF7z JDP 200 50.6616B2151
E

In the following chapters we will learn how to create new data sets from old
data sets and as such it may become necessary to export files to csv.

11



1.4 Exporting data sets

We will export our first data set (“mat013.first_ dataset”) to csv using the fol-
lowing code:

proc export data=mat013.first_data_set
outfile="~/Desktop/first_data_set.csv"
dbms=csv
replace;

run;

Let’s take a look at the screenshot shown. In blue are the SAS keywords:

The procedure used: "export"

The keyword "proc” The name of the SAS datafile we are exporting

SAS: Program Lditor-Untitled

> axport data=mat008.firet_data_set

ile=*~/Desktop/firet_data_set.cev The file type we

/ﬁ*;;”'““""( are exporting to.
The ‘replace" option that

tells SAS to overwrite any %%
existing files with the same 000 [}
name.

The keyword "run"

1. proc which tells SAS that we're about to write a ‘procedure step’ which
we’ll look at a bit closer in the next chapter. The proc keyword is always
followed by the name of the particular procedure we’re going to use. In
this case: export, which is then followed by the statement data= followed
by the library and name of the SAS data file you want to export. Following
this are various options relating to the export statement.

2. outfile - this tells SAS where the exported file should go.

3. dbms - this tells SAS the type of file to create when exporting (in our case
csv, but can be dlm, x1s, etc..). Note that this is not necessary if SAS
can recognise the file extension.

4. replace - this tells SAS to replace any file with the same name as specified
by outfile.

5. run is the keyword that tells SAS where the statement ends.

In the next chapter we will see more complex (and potentially useful) procedures.

12



2 Chapter 2 - Basic Statistical Procedures

2.1 Procedures

In the previous chapter we were introduced to some very basic aspects of SAS:

1. what SAS looks like
2. how to import data into SAS

3. how to export data from SAS

In this chapter we will take a closer look at “procedure steps” which allow us
to call a SAS procedure to analyse or process a SAS dataset. In the previous
chapter we have already seen two procedure steps:

1. proc import

2. proc export
The procedures we are going to look at in this chapter are:

. Viewing datasets
. Summarising the contents of data sets
. Obtaining summary statistics of data sets

1
2
3
4. Obtaining frequency tables
5. Obtaining linear models

6

. Plotting data
The general syntax for these procedures in SAS is given below:

proc [NAME OF PROCEDURE] data=[NAME OF SAS DATA SET];
[Options for Procedure being used]
Tun;

Some of the options that can be used in a procedure step include:

1. “var” - which tells SAS which variables are to be processed.

2. “by” - which tells SAS to compartementalize the procedure for each dif-
ferent value of the named variable(s). The data set must first be sorted
by those variables.

3. “where” - select only those observations for which the expression is true.

13



2.2 A list of procedures
2.2.1 Utility procedures

We have already seen that we can open and view a data set by simply double
clicking on the data set in the explorer window. A data set can also be viewed
by using the “print” procedure.

We'll do this by considering the MMM data file shown (imported using an
import procedure).

SAS: VIEWTABLE: Mal

File Bdit View Tools Data Solutions Help

NOTE! Table hag bean opanad in browss mode

Haleom 9 | Male 1.81 B8 | CF24 3AG an 673, 12263341
Mabal | F 1.56 58 | CF2T ANL 10000 210.71641221
Manusl 45 | M 1.67 d1 | 86 4JL aon 014, 08401069
Hazk 44 | Male 1.76 64 | @Ws 2L 64953 dl.dmla4zae
Haze 1| M 1.72 B2 | BR2L AYE 1612 623.00907042
Marie 24 | Pamale 1.48 38 | CF1A 7BR an 4RI, 07992663
Mari % F 1.61 69 | MP2A JAG 10286 582. 68098581
Halody 104 | F 1.67 53 | HP2A JAG 5078354 337,963 7388
Halody 51 F 1,64 07 | WP7 BB 32156 116, 66437185
Hantgomary 19 | M 1.8 97 | HP15 1AE 56612 483, 16670454
Hyor 37 | M 1.79 90 | cFI5 BAR 16648 544.55991374
Mauraan 52 F 1.42 73 | CF72 8JY 2000 941.45038356
Hike 27 | Male 1.92 119 | ¢F72 9BF 250 54.018802911

The following code will run the “print” procedure:

proc print data=mat013.mmm;
run;

which outputs the data set to the output window as shown.

File Edit View Toole Solutions Help

| The 8AB System 09122 Monday, February 20, 2012 L] :‘

Haight in Home Savinge im Random
Obe Hame Age Sex Metres Weight_in_Kg Postcode Founde Humber
1 Malcom 9 Male 1.81 BB CF24 JAC A0 673.12263341
2 Mabal 76 F 1.56 58 CF27 4HL 10000 210.71541221
3 Manuel 45 M 1.67 41 8WE 4JL 400 814.88401869
4 Mark 14 Male 1.76 64 BWS JIL 64953 31.48134220
5 Mare on 1,72 #2 BR21 4¥E 4512 521.80007042
6 Marie 24 romala 1.45 JB CF14 TR 20 481.87992663
T Mari 26 F 1.6 &9 NP2A JAG 10256 502.60005551
& Malody 104 ¥ 1.67 53 NP4 3AG 5078384 3317.9637388
1 Malody 51 F 1,54 7 NPT SBD 32186 116,66437185
10 Montgamery 19 m 1.8 97 NP1 LA 56512 A8, 16678494
11 Myer itm 1.79 90 ¢FI5 5AB 15648 544.55001374
12 Maureen 52 F 1.42 73 €F72 BJY 2000 941.49038356
13 Mike 27 Mals 1.92 119 ¢F72 9DP 250 54.018802911

7

I.J | ¥
At times we might not want to open the data set but simply gain some infor-
mation as to what is in the data set. This is equivalent to checking the label on
a present without unwrapping it. We do this using the “contents” procedure.

14



proc contents data=mat013.mmm;
run;

This outputs summary information as shown.

The SAS Syetam 09¢22 Monday, February 20, 2012
The CONTENTS Procedurs

Engine/Host Dapendent Infarmation

FW-ru-T
emavak
16184
Alphabetic Liet of Variablee and Attributes
[ Variable TYpe Len Informat
2 Aga Num B BEBTIZ.
4 Haight_in_Metres Hum B BEGTIZ,
B Homa PoBtcode Char B §8.
1 Hams Char 10 £10.
] Random_Humbar num ] BESTI2
7 Savinge_in_Pounde Hum ] BESTIZ,
i Beax Char 6 §6.
) Waight_in_Kg Hum ] BEBTI2.

A procedure that will be needed, when using more complex procedures and
larger data sets, is the “sort” procedure.

proc sort data=mat013.mmm;
by age;
run;

Note that this procedure makes use of the “by” statement which tells SAS which
variable to sort our observations on (in this case the variable age). Recall that
the data set is not sorted. If we run the above “sort” procedure, at first nothing
seems to happen, however if we view the data set again (using proc print or
otherwise) we see (as shown) that the data set is now sorted.

15



SAS: Output-Untitled

File Edit View Tools Solutions Help

The SAE Eyetem 09122 Monday, February 20, 2012 §

Haight_in Home Savinge_in Random

Obe Hame Age Sex Matres Weight_in_Kg Postcade Founda Humber
1 Haloom 9 Male 1.81 BB crad4 3G A0 673.12263341
2 Marc imnmnm 1.72 82 BR21 a¥E 4512 523.80907042
1 Montgamery 19 M 1.8 97 HP1S LAE 56512 481.16678494
4 Marie 24 Famala 1.45 36 cF14 TBR 20 4B3.87992663
5 Mari 26 F 1,61 69 HP2d 10256 582,68095551
6 Mike 27 Male 1.92 250 54.018802911
T Myer T M 1,78 15648 544.55001374
B Mark 14 Male 1.76 64983 31.48134228
9 Manual 15 M 1.67 B 400 81488401869
10 Malaody 51 F 1.54 32186 116.66437185
11 Mauraan 52 F 1.42 2000 941.4903B356
12 Mabal 76 F 1,56 10000 210.71541221
13 Malody 104 ¥ 1.87 5078354 337.9837588

)
Important: If you have the mat013.mmm data set open in browser mode
(i.e. having double clicked on the data set in the explorer window) when
running the “sort” procedure, checking your log shows you an error as shown.
Always close any browser windows when processing a data set - or use the
“print” procedure!

SAS: Log-Untitled

File Edit view Toole Solutions Help

|121 proc sort data=mat008.mmm; A
122 by age;
123 ran;

ERROR: You cannot cpen MATO0B.MMM.DATA fer cutput access with member-level control because
MATODE.MMM.DATA ie in use by you in resoures environment SORT.

NOTE: The SAS System stopped processing this_step because of errors.
NOTE: PROCEDURE SORT used (Total p 88 time):
real time 0.00 seean
cpu time 0.00 seconds

=

### Descriptive statistics

In this section we will go over some of the procedures needed to obtain descrip-
tive statistics.

The first procedure we consider is the “means” procedure. We can use the
following code to obtain various summary statistics relating to the age variables
of the mat013.mmm dataset.

proc means data=mat013.mmm;
var age;
run;

We can specify the particular summary statistics we want (if none are specified
a default set is displayed).

16



proc means data=mat013.mmm N mean std min max sum var css uss;
var age;
run;

We can also choose to display the summary statistics for more than one variable

proc means data=matO013.mmm N mean std min max sum var css uss;
var age height_in_metres;
run;

We can compartmentalise our data results using the “by” statement. Note that
the data set must be sorted on the same variable.

proc means data=mat013.mmm N mean std min max sum var css uss;
var age height_in_metres;

by sex;

run;

Another way of compartmentalising results is using the “class” statement. This
is very similar to the “by” statement and does not require the prior sorting of
your data set.

proc means data=matO13.mmm N mean std min max sum var css uss;
var age height_in_metres;

class sex;

run;

Finally, it’s also possible to create a data set from the “means” procedure.

proc means data=mat013.mmm N mean;

var age height_in_metres;

class sex;

output out=summary_of_mmm
N(age)=number_of_age_obs

mean (age)=average_of_age_obs
N(height_in_metres)=number_of_height_obs
mean(height_in_metres)=average_height;
run;

The above code creates a data set called “summary of mmm” in the work
library (the default library if no library is specified) with two variables “num-
ber_of obs” and “average_of obs” which give the number and mean for the
observations as calculated by the “means” procedure as shown.

17



File Bdit View Teols Data Balutions Halp

oTE: Table has been opened in browse mode.

o 13 3 40, 3B4615305 13 16707692308
F 1 5 & 61.8 5 1.56
Farale 1 1 1 2 1 1.45
H 1 4 4 28 4 1.748
Hale 1 3 3 26, 666666667 ] 1.83

The “univariate” procedure allows for the calculation of univariate statistics in
SAS. The following code will output all the default univariate statistics for all
the variables.

proc univariate data=mat013.mmm;
run;

vari vari
We can choose to run the “univariate” procedure on a subset of the variables,
using the “var” statement.

proc univariate data=mat013.mmm;
var savings_in_pounds;
run;

The various outputs of the “univariate” procedure are shown.

File Edit View Toole Bolutions Help

| The SAE System 13:16 Tuesday, February 21, 2012 13 w

The UNIVARIATE Procedura
variable: Savinge_in_Pounds

Mamante
N 13 Sum Waeighte 13
Maan 406776.231 Sum Observations 5275091
8td Daviation 1404103,92 Variance 1,97161E12
Skawnase J.60401831 Kurtogie 12.99202567
Uncoerrected S8 2.57586E13 Corrected 88 2.365B1E13
canff Variation J46.029121 #td Brror Mean Je9428.361

Basic Btatistical Measuraes

Location variability
Maan 405776.2 gtd Deviation L4odLod
Madian 10000.0 Variancae 1.97161E12
Moda . Ranga 5078334
Interquartile Range 11756
[P

18



File Edit View Tools Solutions Help

Bagic Statistical Messures Y
Location Variability
Hoan 405776.2 gtd Deviation 1404104
Madian 10000, 0 variance 1.97161E12
Hada . Range 5078334
Interquartile Range 31756
-l

File Edit View Tools Sclutions Help

The SAS System 13116 Tueeday, February 21, 2012 20 {

The UNIVARIATE Procedurs
Variable: Savings in Pounds

Tests for Location: Mub=0

Taet -Statietie- =P VAlUGmmm———
student's t© t 1.0415739 Pr > |t 0.3180
Sign M 6.5 Pr >= [M| 0.0002
Signed Rank S 45.5 Pr »>= |8 0.0002

Quantiles (Definition 5)

Quantile Estimate

1008 Max 5078354

998 5078354

958 5078354

908 64953

5% 03 32156

50% Median 10000

25% Q1 a00

108 30

5% 20

1% 20

0% mink 20 J
5

H =

19



File Edit View Tools Sclutions Eelp

| Quantiles (Definitien 5)

Quantile Estimate
100% Max 5078354
9% 5078354
5% 5078354
90% 64953
75% Q3 32156
_ 50% Median 10000
25% Q1 100
10% 30
5% 20
1% 20
0% Min 20
B

_\‘

ul

| =]

File Edit View Toole Solutions Eelp

| The 5AS System 13116 Tussday, February 21, 2012 21

_\‘

The UNIVARIATE Procedure
Variable: Savings_in_Founds
Extreme Observationes
~===LOWEBL==== ====— HEighest-
vValua oba Value obe
20 6 15648 10
30 11 32166 4
250 13 56512 9
400 7 64953 12
2000 3 5078354 5
[
H
H =
##+# Frequency tables
The “freq” procedure allows us to obtain frequency tables of data sets. As an

example, let’s consider the dataset shown.

20



Math_tests.csv (~) - VIM

mame,Teacher,Pass/Fail
Bob,Mr Smith,P
Brayden,Mr Evans,F
Billy,Mr Smith,P
John,Mr Smith,P
Jack,Mr Smith,F

Julie,Mr Evans,F
Jane,Mr Evans,P
Jackie,Mr Evans,P
Bonnie,Mr Evans,P
Bob,Mr Evans,P
Juliet,Mr Smith,P

1,1

The most basic “freq” procedure will give the frequencies of all the observations
in the data set:

proc freq data=matO13.math_tests;
run;

We can specify the variables we want to look at by listing them after the “tables”
statement (similar to the var statement for the “means” procedure):

proc freq data=mat013.math_tests;
tables teacher pass_fail;
run;

If we want to cross tabulate the data then we use a * in between the variables
concerned:

proc freq data=matO13.math_tests;

21



tables teacher*pass_fail;
run;

The above code gives the table shown.

SAS: Output-Untitled

File Edit View Toole Solutions Help

The SAS System 11337 Tuesday, February 21, 2012 8

The FREQ Procedure

Table of Teacher by Pase Fail
Taacher Page_Fail
Froguency
ra t
Raw Pot
caol Pet F P | Tetal
. . '
Mr Bvans 2 | a | 6
18,18 | 36.36 | 54.55
33.33 | 66.87 |
66,67 | 50,00 |
+ + +
Mr Smith 1| 5
36,36 | 45,45
80,00 |
50.00 |
_________ P [ —
Total 8 11

12.73 100,00

=] |
Various options can be passed to the “freq” procedure, the simplest of which is
shown below:

proc freq data=mat013.math_tests;
tables teacher*pass_fail / nocol norow nopercent;
run;

Other options include computing a chi square test but we will not worry about
that for now.

2.2.2 Correlations
The “corr” procedure can be used to obtain correlations in SAS. The following

code is the basic “corr” procedure applied to the mat013.mmm data set which
gives the output shown.

proc corr data=mat013.mmm;
run;

22



File Bdit View Toole Solutions Help

The BAS Bystem 12152 Tueeday, Fabruary 21, 2012 & T
The CORR Frocedure
Paarson Correlation Coefficients, N = 13
Frob > |r| under H0: Rho=0
Hoight Waight Savinge Random
Aga in Metres in_Kq in Pounda Humbar
Age 1.00000 0.01093 0.40189 0.62482 -0.25686
0.9717 0.1734 0.0224 0.3969
Haight_in Metres 0.01093 1.00000 0.75927 0.00640 0.20438
0.9717 0.0026 0.9835 0.5030
Waight_in_Kg 0,40189 0.75927 1.00000 0.42968 0.10383
0.1734 0.0026 0.1428 0.7364
Savinge_in_Pounde 0.62482 0.00640 0.42968 1.00000 D.15484
0.0224 0.9835 0.1428 0,6136
Random_Number 0.25686 0,20438 0.10353 0,156484 1.00000
0.3969 0.5030 0.7364 0.6135

= =

If we want to run the “corr” procedure on a subset of the variables then we use
the “var” statement:

proc corr data=mat013.mmm;
var age savings_in_pounds;
run;

File Bdit view Toole Solutione Help

The BAS System 12152 Tueeday, February 21, 2012 &
The CORR Procedure

2 Variables: Age Savinge_in Pounde

gimple Statistics

wariablae H Haan Btd Dav Bum Minimum Haximum

Age 13 22.07692 19,15925 28700000 2,00000 74, 00000

@avinge_in_Pounds 13 BTG99 172097 1140091 1.50000 470320
Poarson Correlation Coefficients, N = 13

Prob * |r| wnder HOt Rha=0

savings

Age in_Pounds

Age 1.00000 0.62482
0.0224

gavinge_in_Pounde 0.62482 1.00000

0.0224

2.2.3 Linear Models

In this section we’ll very briefly see the syntax for some basic linear models in
SAS. First of all we’ll take a look at linear regression. The following code will

23



run such an analysis on the mat013.jjj data set, checking if there is a linear
model of height with predictors weight and savings:

proc reg data=mat013.jjj;
model height_in_metres=weight_in_kg savings_in_pounds;
run;

SAS: Output-Untitled-PROC GLM running

File Edit View Tools Solutions Help

NOTE: At top.
The SAS Syestem 0$:44 Wedneeday, February 22, 2012 1 N

The REG Procedure J
Model: MODELL
Dependent Variable: Height_in_Metres
Humber of Obeervations Read 13

Number of Obeervations Used 13

Analyeie of Variance

Sum of Mean
Source DF Squares Sguare F Valua Pr » F
Model 2 0.17509 0.08754 11.78 0.0024
Error 10 0.07434 0.00743
Corrected Total 12 0.24943
Root MSE 0.08822 R-8quare 0.7020
Dapandant Maan 1.69789 Adj R-Sg 0.6423
L Coeff Var 5.07873

SAS: Output-Untitled-PROC GLM running

File Edit View Tools Soclutions Halp

The SAS System 09:14 Wedneaday, February 22, 2012 2 iy
The REG Procedure
Model: MODELIL
Dependent Variable: Height_in_Metres |
Parameter Estimates
Parameter Standard
variable DF Estimate Error t Value Fr > |t
Intarcaept 1 1.18436 0.10809 1L0.886 <.0001
Weight_in_Kg 1 0.00829 0.00171 4.85 0.0007
savinqs_in_?onndu 1 -3.28621E-7 1.601662E-T7 -2.08 0.0673
7
H =

Looking at the p-value we see that the overall model should not be rejected,
however the detailed results show that perhaps we could remove savings from

24



the model.

Analysis of variance (ANOVA) can be done very easily in SAS. We show this
using a new data set.

math.csv (~) - VIM

[MALC,PROF, GRADE
1,A,65
1,B,70
1,€,90
1,B,85
1,B,95
1,E,100

s
.

k] L] - . L ]
- . L - L & ] L]

.

I o > > e >
00 W~ WL~~~ W~
N O WL w~ oW,

|
2
2
2
2,
2
2
2

.

We will use the “anova” procedure to see if the grades obtained by students
depend on their teacher.

proc anova data=matO13.math;

25



class prof;
model grade=prof;
run;

Note the “class” keyword is needed to state which variable we are using to group
on. The results show that there is indeed a difference between groups (further
post-hoc tests are needed to investigate which groups differ etc.).

SAS: Output-Untitled-PROC GLM running

File Edit view Tools Solutions Halp

The SAS System 09:44 Wednesday, February 22, 2012 &
The ANOVA Procedurae

Dependent Variable: GRADE

sum of

Source DF Sguares Mean Sguare F value Pr » F
Model 2 1070.400000 535.200000 5.51 0.0201
Error 12 1166.000000 97.166667
Corracted Total 14 2236.400000

R-Bguare Coeff Var Root MSE GRADE Mean

0.478626 12.13855 9.857315 8L.20000
Source DF Anova S8 Mean Sguare F Value Pr » F
PROF 2 1070.400000 535.200000 5.51 0.0201

B

(=) -
Another procedure that can be used for a variety of models (including the 2-way
anova) is the “glm” (general linear model) procedure. The following code simply
reproduces the above results.

proc glm data=mat013.jjj;
model height_in_metres=weight_in_kg savings_in_pounds;
run;

proc glm data=mat013.math;
class prof;

model grade=prof;

run;

2.2.4 Plots and charts

There are various ways to obtain histograms in SAS, the easiest way is to use the
“univariate” procedure with the “histogram” option. The following code gives
a histogram for the height of individuals in the mat013.jjj dataset as shown.

26



proc univariate data=mat013.jjj;
var height_in_metres;

histogram;

run;

SAS: Image Editor

File EBEdit View Toocle Image Colore Solutions Help

Distribution of Height_in_Metres

40 + h

Percent
-]

10 -4

J T T T
1575 1725 1875 2025
Height_in_Metres

=) [
There are various ways to obtain scatter plots in SAS, the easiest way is to use
the “gplot” procedure. The following code gives a scatter plot for the height of
individuals against their weight in the mat013.jjj dataset as shown.

proc gplot data=mat013.jjj;
plot height_in_metres*weight_in_kg;
run;

27



SAS: GRAPH1-WORK.LISTING.GPLOT

File Bdit WView Tools Solutions Help

Scroll forward toc see the subseguent graph.

Height_in_Metres

.0
? H
1.98
198
L)
1.9z +
1.9
.8
1
N 1}
182
1.8
.18
1.76
()
112 t
1.7

168
166

164
1,52 t+

15

1,58 y &
.56
54 +

B B LA LA B e B B B B LA LI N e |
40 50 60 ] a0 90 100

Welght.in.Kg

There are various other ways to obtain similar graphs as well as change the look
and feel of our graphs. We won’t go into this here but you are encouraged to
look into it.

2.3 Exporting output

We can output results of procedures in SAS using the “output delivery system”.
The syntax is straightforward and we surround normal SAS code with the “ods”
statements to output to various formats (html, pdf, rtf).

ods [format of your choice] file=[Location of file to be output];
[Normal SAS codel
ods [format of your choice] close;

As an example, the following code creates an html file called “freq_table” in
html format stored at the location “~/Desktop” (note that in Window’s the /
should be a \) as shown.

ods html file="\~/Desktop/freq_table.htm";
proc gplot data=mat013.jjj;
plot height_in_metres*weight_in_kg;

run;

ods html close;

28



545 Output

€ | D file:/ffhomefsmavak/Desktop/freq_table htm Lol TR T N N
Texthis & Oesmos Graphi... [Ticloud © Dropbox [ElMendeley @ OnlineLaTeXE... # Wolframjalpha || importtoMen... §§ Game Theory = Other Bookmarks
The SAS System

The FREQ Procedut

Cumslative | Camutate
CHC Frequncy Percent Frequency  Percent
1 8| s [ an

2 Pl oaner 13 1sa0

Cumsiasive | Camusasve
PROF Frequncy Percent Frequency  Percent

. 5 s T
N s ma 0 e
¢ s ma 5 oo
GRACK | Froquency  Parcems | Freuency | Porcen
w v e i a
“ sar un
n a8t a0
n o T
" )
" 1w
0 ¢ an
" )
" o w  ms
" aer u  na
" e 2 e
" e I
" oar T
m ] 5 s

The following code will create a file called “scatter_ plot.pdf” in pdf format
stored at the location “~/Desktop” (note that in Window’s the “/” should be a
"7} as shown.

ods pdf file="\~/Desktop/scatter_plot.pdf";
proc gplot data=mat013.jjj;
plot height_in_metres*weight_in_kg;

run;

ods pdf close;

29



scatter_plot.pdrf

Index - X

1413 Thumly Pty 23,3002 1
The Gplot Proce... 1

Plot of Height _i... 1 e ew

The following code will create a file called “regression.rtf” in rtf format (Word,
LibreOffice etc.) stored at the location “~/Desktop” (note that in Window’s
the “/” should be a ””) as shown.

ods rtf file="\~/Desktop/regression.rtf";
proc reg data=mat013.jjj;
model weight_in_kg=height_in_metres;

run;

ods rtf close;

30



regression breOFfice Writer B -~ n E E & El M E M _I| 2] ~

= S —
— — Cl=« EEEM0 EE - =
. < :
h\‘..? =] Lj \j| [ = &J [*4 §| tl 1 - e .‘
el e = »
I [& |Dpefautr v | | Times |1 - |ﬂ| A A EH = = i
=] -6 -5 a4 3 .2 1. & 1,23 -4 s} & 7 85 10 41 12 13] :
Fit Diagnostics for Weight_in_Kg
oq, 2= 2 o
° o o
- 14 -] L] 140 o
- 10 ° o = 7
& N £ o ©° g leo
i ol o g2 04 o 2 0o
o o o a, o B oo
o o =14 ) 14 Qo
-10 ? o ° @
o 224 24
——T— T — T
S0G0 70 B0 90 500 60 70 HO W0 0L 02 03 04
Predicted Value Predicted Value Leverage
204 | 100 - o
o o0 0.4+
10 o &
] » ':‘ 80 - a 0.3
2 o4 °°e o o/ 09 i
] E: T4 o e % 0.2+
= 00 o o
.10 ® & G0 o 014 TT I
o 0
EOE | L4 r
20 4 °s 00 IR
T T T LB e T 5T
a 0 1 50060 7O B0 90 100 o 5 10
Cuantile Predicted Value Observation
40 Fit Mcan  Residual
o
304
204
= N & Ohservations 13
B 204 10 ° & Parameters 2
b . o Frror DI "
10 0 o MSE 120.24
ax ol R-Siquare  0.5765 B
o -0 & - Adj R-Square 0,538 &
T T T T T T T T T T 1"
=35 1% 5 25 BONANR OO0 0408 =
Find v W A I
Page1/4 | DeFault | English (UK) |insrT |sto =] | Table5:a1 |EE6 T @ —— ® |101%

3 Chapter 3 - Manipulating data

3.1 Data steps

A data step is a type of SAS statement that allows you to manipulate SAS data
sets. Some of the things we can do include:

1. Copying a data set (with new variables)
2. Concatenating any number of data sets

3. Merging any number of data sets

31



The following code simply creates a data set in the work library called “j” that
is a copy of the data set jjj located in the mat013 library.

data j;
set mat013.jjj;
run;

To concatenate two data sets (as shown pictorially) we use the following syntax:

data [New Data Set];

set A B;

run;

4 N -~ ~\
A A

\ S/ \_ J

d N

B B

\ ) . J

The following code concatenates the jjj and mmm data sets as shown.

data mat013.mmmjjj;
set mat013.mmm mat013.jjj;
run;

32



Fils Bdit View Tasle Data Solutions Help

OTE: Toble hos bean opened in browse mode.
¥ 1 h crz By 1.5 327.5803756

Juliet 15 F 1.62 45 CFl4 TBR 930 5977.53222778
aill a v 1.87 49 EWE dJL 57 458.50394061
a0 TF 1.62 51 A cr72 sor 200 50. 661682151
Jamae u n 1.59 58 BWS JJL 10930 565,9515243
Jackia 3 F 1.68 60 NPEE 3AC 10 564.2944281
Janny "or 163 70 BRZL 4%E 465028 206. 14460157
Jaraminh LA 1.54 70 NPLS 1AE 84953 41.042356286
John 15 n 1.72 71 GF2e aae 1000 316.00417901
d0 4" 108 IR 500 T87,19719566
Joa 19 n 1.92 5 NPY SBD 2930 206.914832
Jim 17 n 1.1 B3 CFi5 SAS 470320 85, 927267
Julien 17 oM 2,01 100 WP24 IAG 102930 583,12501 665
Habal w v 1.86 58 CF2T QWL 10000 210, 11641221
Mari v 1,61 69 NPEE IAG 10266 562, 680955651
Maursasn 52 F 1,42 73 eFI2 B0y 2000 941,49030356
Malody [TRE3 1.64 AT 32168 116, 664371856
Helody 104 | F 1,67 51 NFZ4 IAG 5078354 337.9637388
Marie M F 1.45 3B P14 TBR 20 4B3. 87992663
Manusl 45 n 1.67 L 8wé dJn 400 B14. 08401869
Maro N 1.72 2 wRZl 4¥E 4512 523.80307042
Montgome 15 M 1.8 97 WPIS 1AE 56612 483, 16678454
Myer 7 om 1.7 90 CFI5 5AS 15648 544.55891174
Haloam LA 1.81 BE  CF28 3AG o 673.12263341
Mark a4 n 1.76 64 8WS 3JL 64953 3148134228
Mike 27 n 1.92 119 GF72 9DF 250 54. 016802911

To merge two data sets (as shown pictorially) we use the following syntax:

data [New Data Set];
merge A B;

by [Merge Variable]
run;

Note that the two data sets must be sorted on the merge variable prior to
merging.

s N ™ 4 Yo )

- AN 4 . AN J

The following code would merge the two data sets first_ data_set and
other_data_ set in the mat013 library as shown.

proc sort data=mat013.first_data_set;
by name;
run;

proc sort data=matO013.other_data_set;
by name;

33



run;

data mat013.merged_data_set;

merge mat013.first_data_set mat0l13.other_data_set;
by name;

run;

File Béit View Toole Dave oluti| File Bdit View Tools Date Bolutions Halp

Data steps can be used in conjunction with the where statement to select certain
variables. For example consider the data set shown.

34



SAS: VIEWTABLE: Work.Dwarfs

E;le Eﬂit Eiew lgpuls Data

Solutions Help

NOTE: You cannot shrink the window beyo

Dopey

Sheezey

Happy

Sleepy

Grumpy
Bashful

Do

The following code selects only the elements of the above data set that start
with a D.

data Dwarfs;

set Dwarfs;

where substr(Name,1,1)="D";
run;

The result is shown in (note that the above code makes use of the substr
function that we will see later).

35



SAS: VIEWTABLE: Work.Dwarfs

File FEdit View Tools Data Solutions Help

NOTE: You cannot shrink the window beyond this p

Dopey

Dococ

3.2 The program data vector

SAS is able to handle very large data sets because of the way data steps work.
In this section we’ll explain how it uses the “program data vector” (pdv) to
efficiently handle data. The basic steps of compiling a data step are as follows:

1. SAS creates an empty data set.
2. SAS checks the data step for any unrecognized keywords and syntax errors.

3. SAS creates a PDV to store the information for all the variables required
from the data step.

4. SAS reads in the data line by line using the PDF.

(If a “by” statement is used (for example when merging two data sets) the
PDF does not empty if there are still observations with the same value of
the “by” variable).

5. SAS creates the descriptive portion of the SAS data set (viewable using
the “contents” procedure).



An example of how this works with concatenation and an example of how this
works with merging is shown.

data work.C;
set work.A work.B;
run;
work.A
Name | Age
.| Billy ...} 28....|.. work.C
ABob- - loa- |- Name $8 | Age 8 Name | Age
Jack 21 Billy 28
work.B —_— Bob 24
Name | Age
Jack 21
Jon 31
data work.E;
merge work.A work.D;
by Name;
run;
work.A
Name | Age
| Billy. - |28 |- work.E
1 Bob 24 Name $8 | Age8 | Height8 Name | Age | Height
Bob 24 195 Billy 28 173
work.D _— Bob 24 179
Name | Height Bob 24 195
Billy {473
Bob....{.179
‘Bob----{-195

37



3.3 Creating new variables

Creating new variables using various arithmetic and/or string relationships is
relatively straightforward in SAS. The following code creates a new data set call
MMM _ with BMI, with a new variable “BMI” as a function of the height and

weight variables in the MMM dataset in the mat013 library.

data mat013.MMM_with BMI;

set mat013.MMM;

bmi=weight_in_kg/(height_in_metres**2) ;

run;

Some of the arithmetic functions are shown.

Symbol Definition Example

b Exponential y=x**3

* Multiplication r=x*y

/ Division d=xly

+ Addition S=X+y

- Subtraction t=x-y

Function Definition Example

Abs Absolute value abs(x)

Int Integer (takes the integer int(x)
part of the argument)

Log Natural log log(x)

Log10 Log base 10 log10(x)

Round Rounds the argument to round(x,.01)
the nearest specified level

Sqrt Square root sqri(x)

We can also do operations on strings, the following code replaces the variable
“Sex” with the first entry of “Sex” (which gets rid of the Male - M and Female

- F issue).

data mat013.MMM_with_BMI;

set mat013.MMM;
sex=substr(sex,1,1);
run;

38




Function Definition Example

Substr Outputs a substring of substr(string, N,L)
length L at starting position
N of a string

Upcase Converts a sfring to upper | upcase(string)
case

Lowcase Converts a string to lower | lowcase(string)
case

Trim Removes only trailing trim(string)
blanks from a string

Index Return 0 or a starting index(string,substring)
position of substring in
given sfring

It’s worth checking the web for a full list of various SAS functions (there are a
huge amount of them).

3.3.1 Dropping and keeping variables.

In this section we’ll take a quick look at two simple ways of improving the
efficiency of a data step. Recalling how SAS handles a data step (using the pdv
as described previously), one immediate way of improving efficiency is to ensure
that the pdv only “transports” the variables we require. We do this with the
“drop” or “keep” statement.

Let us consider the previous example and assume that we want our
MMM_ with_ BMI data set without the weight and height variables. We
use a “drop” statement to get rid of those variables:

data mat013.MMM_with_BMI_nhw(drop=weight_in_kg height_in_metres);
set mat013.MMM;

bmi=weight_in_kg/(height_in_metres**2);

run;

Note that the following code would not give the required output as we are trying
to drop the variables from the original data set, however we need those variables
to calculate the bmi:

data matO013.MMM_with_BMI_nhw;

set mat013.MMM(drop=weight_in_kg height_in_metres);
bmi=weight_in_kg/(height_in_metres**2) ;

run;

39



The keep statement (basically) does the same thing as the drop statement but
in reverse, by only keeping the variables we have specified. Which one to use
depends simply on whether or not you want to drop or keep more variables.

Note that you cannot use a drop statement and a keep statement in the same
data step.

The following code will create a data set with just the bmi variable.

data mat013. just_bmi(keep=bmi) ;

set mat013.MMM;
bmi=weight_in_kg/(height_in_metres**2) ;
run;

3.3.2 Renaming variables

The following code creates a data set “JJJ” in the work library which is a
copy of the “JJJ” dataset in the mat013 library, renaming the “sex” variable to
“gender”.

data JJJ(rename=(sex=gender));
set mat013.JJJ;
run;

This can also be used in the set data set:

data JJJ;
set mat013.JJJ(rename=(sex=gender)) ;
run;

3.3.3 Operations across rows

We have seen in previous sections how to create new variables for any given
observation (i.e. across columns of a data set). In this section we see how to
create variables across rows. Recalling how the program data vector works, this
implies that we must find a way to keep certain entries in the pdv for future
calculation.

We will demonstrate this using the birthday money.csv data set as shown.

40



birthday_money.csv (~) - VIM

Birthday,Amount
1,100

2,150

3,120

4,0

5,500

6,5

The first such way is to use the “retain” statement. The “retain” statement keeps
the last entry for a given variable in the pdv for future calculation. Note that
we can give an initial value for a particular variable as shown in the following
code (which produces a variable “total” that is a running total of “amount”)
the output of which is shown.

data bm_analysis;

set mat013.birthday_money;
retain total O;
total=total+amount;

run;

41



SAS: VIEWTABLE: Work.Bm_analysis

File Edit View Tools Data Solutions Help

NOTE: ¥ou cannot shrink the window beyond this point.

Another tool for such calculations is the “lagn” function which gives the value
of a variable from a certain number n of prior steps. The following code gives
two new variables, the yearly difference and 2 yearly difference, the result of
which is shown.

data bm_analysis;

set mat013.birthday_money;

retain total O;

total=total+amount;
yearly_diff=amount-lagl (amount) ;
two_yearly_diff=amount-lag2(amount) ;
run;

File Edit View Tools Data Solutions Help

NOTE: ¥ou cannot shrink the window beyond this point.

The lag functions can be used in much more complex assignments and in fact
when simply wanting to calculate a difference there is a quicker way: using the
“difn” function as shown in the code below which gives the same result as shown.

data bm_analysis;

42



set mat013.birthday_money;
retain total O;
total=total+amount;
yearly_diff=difl(amount) ;
two_yearly_diff=dif2(amount) ;
run;

3.4 Handling dates

Dates are handled in a particular way in SAS. Let’s consider the csv file shown.

43



birthdays.csv (~) - VIM

Mame,Birthday
Malcolm,09/10/1934
Mathieu,04/02/1998
Jack,02/11/2005
Nicolas,03/03/1978
Pauline,05/02/1922
Pascal ,08/04/1954
Dimitri,09/03/2002
Julien,08/01/26004
Penny,10/12/1984
Izabela,11/09/1983
Paul,11/12/1984
Janet,12/12/1994
Joanna,12/09/1983
Iain,01/07/1985
Usain,11/07/1992
Bryan,10/09/1986
Richie,12/07/1984
Dan,®2/05/1989
Leanne,02/09/1988
Juliet,01/12/1982
Vince,14/02/1984
Zoe,23/09/1983

<99C written i |

We have seen in Chapter 1 how to import data using proc import. If we use the



normal approach an error would occur. This is due to the confusion associated
with our birthday variables (the first 20 rows have the date and month values
both less than 12). A further option that can be incorporated in proc import
is the number of rows that SAS will “pre-read” to identify the type of variables
that are to be imported. This is often an easy way to ensure that SAS recognises
dates.

proc import datafile='\~birthdays.csv'
out=birthdays

replace;

getnames=yes;

guessingrows=25;

run;

A proc contents run on the above data set shows that the birthday variable
data was imported using the informat DDMMYY10. In other words SAS has
recognised that the dates were in that particular format.

SAS: Output-Untitled

File Edit View Toole Sclutions Help

The SAS Syctem 07:51 Wednesday, |.
The CONTENTS Procedure
Engine/Host Dependent Informaticn
me smavak

e (bytes) le3ed

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat
2 Birthday Num 8 DDMMYY10. DDMMYY10.
1 Name Char 7 7. 7.
/
=l ] -

Another approach is to import files in SAS using a data step and the infile
statement. When doing this we can tell SAS the format of the data (whether
or not it is a string, numerical or date variables).

data birthdays;

infile '~/birthdays.csv' dlm=',' firstobs=2;
input Name $ Birthday ddmmyy1O0.;

run;

45



The infile statement tells SAS where the data is located and the ‘dlm’ statement
tells SAS how the file is delimited (in this case with a comma). The ‘firstobs’
statement tells SAS where the data starts in the file (in this case the second
row as the first row is the name of the variables in our data set). The input
statement then allows us to tell SAS the names of the variables as well as the
format they are in, here we tell SAS that the second variable is to be called
‘Birthday’ and it is in the ddmmyy8. format.

46



SAS: VIEWTABLE: Work.Birthdays

File Edit View Tools Data Sclutions Help

Malcolm
Mathieu
Jack

Hicolas

Fauline

Fascal

Dimitri

Julien

Fenny
Izabela
Paul

Janet

Joanna

Tain

Usain

Eryan

Richie

Dan

Leanns
Juliet
Vince

Foea

ey |
The above output might be a bit confusing, this is due to the fact that SAS

47




handles dates as numbers, using the convention that the 1st of January 1960 is
the number 0 (this allows for straightforward arithmetic manipulation of dates).
The following code imports the data as above and displays the underlying nu-
meric dates in the date9. format.

data birthdays;

infile '\~/birthdays.csv' dlm=',' firstobs=2;
input Name $ Birthday ddmmyyS$.;

format Birthday date9.;

run;

The output is shown. Note that applying the date9. format only changes the
appearance of the data.

48



SAS: VIEWTABLE: Work.Birthdays

File FEdit View Tools Data Solutions Help

NOTE: Takle has been opened in browse mode.

Malcolm 030CT2019
Mathieu DAFEB2019
Jack D2NOW1820
MNicolas O3MAR2019
Pauline OEFER2019
Fascal ODEAPR2019
Dimitri O3MARLS20
Julien ODBJAN1920
Fenny 10DEC2019
Izakela 118EP2019
Paul 11DEC2019
Janet 12DEC2019
Joanna 128EP2019
Tain 01JUL2019
Usain 11J0L2019
Bryan 108EP2019
Richie 12JU0L.2019
Dan 02MAY2019
Leanne D28EP2019
Juliet O1lDEC2019
Vince 14FEB2019
Zoa 238EP20119

There are various formats that can be used when importing variables (for dates

49



as well as other variables) and subsequently these same formats can be used to
display the data if this is required. Searching online quickly finds other SAS
formats.

4 Chapter 4 Programming

4.1 Flow control

A huge part of programming (in any language) is the use of so called “conditional
statements”. We do this in SAS using “if” statements. The following code
creates a new variable “age_group” which is “young” if the age is less than 29
and “old” if the age is larger than 29. Note we're also including a keep statement
to just have the name and age group in the new data set.

data age_group(keep= name age_group) ;

set mat013.mmmjjj;

if age<30 then age_group='young';
else age_group='old';

run;

We can also use this in conjunction with the else if statement as shown below:

data age_group(keep= name age_group) ;
set mat013.mmmjjj;
if age<18 then age_group='child';
else if age<30 then age_group='young';
else age_group='old';
run;

Note that we can also compare strings as shown with the following code:

data age_group(keep= name age_group) ;

set mat013.mmmjjj;

if age<18 then age_group='child';
else if age<30 then age_group='young';

else age_group='old';

if substr(Name,1,1)='J ' then data_set='JJ]';
else data_set='MMM';

run;

90



Here are some of the comparison operators that can be used in conjunction with
‘if” statements.

Symbol Mnemonic Definition

< Lt Less than

<= Le Less than or equal to

> Gt Greater than

>= Ge Greater than or equal to
= Eq Equal to

= Ne Not equal to

A further important notion in programming is the notion of loops. These are
done in SAS using “do” statements. There are four ways the “do” statement is
used:

1. do
2. do (iterative)
3. do while

4. do until

The first use allows us to combine several statement into one. This is often used
in conjunction with “if” statements:

data age_group(keep= name age_group minor_Y_N);
set mat013.mmmjjj;
if age<18 then do;
age_group='Child"';
minor Y N='Y';
end;

else do;
age_group="'Adult';
minor_ Y _N='N';
end;

run;

The ‘do’ statement can be used to push your computer a bit more. The “do
iterative statement” allows you to automate various procedures. The following
code output the total number of birthday candles that would have been used
on everyones birthday cake in the JJJ data set.

ol



data candles(keep= name age candles);
set mat013.jjj;

candle=0;

do k=0 to age;

candle=candle+k;

end;

run;

The last two uses of the ‘do’ statement are very similar and allow us to iterate
“until/while” a particular condition is met.

The do until (expression) statement executes a group of statements until the
expression within the brackets is satisfied. The validity of the expression is
checked at the end of each loop.

do until (expression);
data step commands;
end;

The following code outputs the number of even numbers less than or equal to
70, computing each even number and checking whether or not it is more than
70.

data even_numbers;
k=0;

even=0;

do until(even>=70);
even=2x%x*k;

k=k+1;

end;

run;

We can do a similar calculation using the do “while” statement. The do while
(expression) statement executes a group of statements whilst the expression
within the brackets is satisfied. The validity of the expression is checked at the
beginning of each loop.

do while (expression);
data step commands;
end;

data even_numbers;
k=0;

even=0;

do while(even<70);

92



even=2x%x*k;
k=k+1;
end;

run;

Note that do iterative statements (also called “do loops”) are often used in
conjunction with the “output” statement which empties the pdv to the output
data set. The following code outputs the variables in the pdv: “k” and “even”
at each iteration of the do statement. The output is shown.

data even_numbers;
k=0;

even=0;

do while(even<70);
even=2x%x*k;

output;

k=k+1;

end;

run;

93



VIEWTABLE: Work.Even_numbers

E:Lle Ed.i.t E:i.aw Tools Data Enlut.i.r:ns Help

MOTE: Table has been opened in browse mode.

0wl U L R

W

=
o

[
[y

—
8]

[y
L*)

[
=

[Py
o

=
]

=
o

[y
L¥e]

LS
L=

L8]
=

LS N
[V ¥ ]

%]
o9

58]
n

%]
o

%]
=

8]
o

Ly B
L= ¥ ]

L
=

L
bt

(]
Ll

Lad
=1

L
n

54



4.2 How does SAS compile code?

In this chapter we will see how to program macros in SAS. Macros generate and
run code with varying arguments. The macro facility is a tool for extending
and customising SAS and for reducing the amount of text you must enter to do
common tasks. The macro facility enables you to assign a name to character
strings or groups of SAS programming statements. From that point on, you can
work with the names rather than with the text itself.

When you submit a SAS macro the Input stack receives content of the program.
Word scanner scans each line of the macro for tokens. If a token contains a
macro character (a % or a &) that token is sent to the macro compiler. The
Macro compiler does its work and places tokens back in the input stack. The
token is examined by the word scanner and the process repeats. When the word
scanner detects a step boundary it triggers the data step compiler. This process
is represented diagrammatically.

Data Step

Input Stack Compiler

Macro Compiler

When you submit a macro, it goes first to the macro processor which produces
standard SAS code from the macro references (macro code is compiled first).
Then SAS compiles and executes your program.

In general the syntax for a macro is as follows:

%macro macro-name <(macro-parameter-list>;
.. SAS Code...

%mend <macro-name>;

%)



The following example creates a macro called “My_ plot” which when called will
plot a graph of height against weight of the variables in mat013.jjj:

%macro My_plot;

proc gplot data=mat013.jjj;

plot height_in_metres*weight_in_kg;
run;

Y%mend ;

To run the macro we call it with the following statement:
%My _plot;

As discussed above, it is possible to pass arguments to a macro. The following
code creates a macro “shopping” that will remove a certain quantity “spend”
from the variable “life_savings”:

Jmacro shopping(spend) ;

data JJJ_after_shopping(keep= Name 0ld_savings New_savings);
set mat013.jjj;

0ld_savings=savings_in_pounds;
New_savings=saving_in_pounds-&spend;

run;

%mend ;

Note the ampersand “&” which the “word scanner” will recognise, sending
“&spend” to the “macro compiler” where it will resolve to whatever value is
passed to the macro.

We can define macros with multiple variables. Consider the following modifica-
tion of the above code which allows for multiple shopping trips:

%macro shopping(spend,trips);

data JJJ_after_shopping(keep= Name 0ld_savings New_savings);
set mat013.jjj;

0ld_savings=savings_in_pounds;
New_savings=saving_in_pounds-&trips*&spend;

run;

Y%mend ;

The above code is using so called “positional” macro parameters. It is possible
to also use “keyword” macro parameters as shown in the code below.

96



%macro shopping(spend=,trips=);

data JJJ_after_shopping(keep= Name 0ld_savings New_savings);
set mat013.jjj;

0ld_savings=savings_in_pounds;
New_savings=saving_in_pounds-&trips*&spend;

run;

Y%mend ;

We can then call the above macro and change the order of the parameters:
%shopping (trips=2, spend=500) ;
It’s also possible to set default values:

%macro shopping(spend=,trips=1);

data JJJ_after_shopping(keep= Name 0ld_savings New_savings);
set mat013.jjj;

0ld_savings=savings_in_pounds;
New_savings=saving_in_pounds-&trips*&spend;

run;

%mend ;

Now if we call the macro without giving a value to trips it will take the default
value 1.

%shopping (spend=500) ;

4.2.1 Macro variables

In this section we're going to take a slightly closer look at macro variables. A
macro variable is a variable whose value is stored within the macro symbol table.
When the macro variable is used in SAS code, SAS substitutes the value of the
macro variable into the SAS code. SAS macro variables are distinguished by
the “&” sign before the variable name. Note that all SAS macro variables are
stored as text strings.

We can experiment with macro variables using the %let statement which allows
the construction of macro variables outside of a macro definition. This is the
simplest form of a macro statement. It can be placed anywhere in a program,
not only inside a Macro. “%let” creates global macro variables. An example of
this is shown in the following code which gives the output shown.

%let spend=400;
%let trips=500;

o7



%macro shopping;

data JJJ_after_shopping(keep= Name 0ld_savings New_savings);
set mat013.jjj;

0ld_savings=savings_in_pounds;
New_savings=saving_in_pounds-&trips*&spend;

run;

%mend ;

%shopping;

SAS: VIEWTABLE: Work. Jjj_after_shopping

File Edit View Toole Data Solutione Help

NOTE: Table hae been opened in browse mode.

Julie 1.8 -199998.5

Juliet | 930 -199070 |
Jill 357 ~199643

Jo 200 -199800 |
Jamee 10930 -189070 |
Jackie 10 -199990 |
Jenny 465029 265029 |
Jeremiah 84953 ~115047

John 1000 -199000 |
Jo 500 -199500 |
Joe 2930 -197070 |

Jim 470320 270320
102930 -97070

Julien

It’s also possible to view (in the log) the values of a macro variable using the
“%put” statement. There are two uses for it:

%put <text> &macro-variable-name;

This outputs some (optional) followed by the value of particular macro variable.
The other use is shown below:

%put <_all_ | _global_ | _local_ >;

This will output either all, all the global or all the local macro variables. These
statements should allow us to better understand some of the issues related to the
resolution of multiple ampersands. Multiple ampersands can be used to allow
the value of a macro variable to become another macro variable reference. The
macro variable reference will be rescanned until the macro variable is resolved.
There are 2 rules to follow:

1. && is a token in its own right and resolves to &

98



2. Each token is handled independently

The important thing to note here is that a double ampersand “&&” is a token
in itself that resolves to a single ampersand “&” (THIS IS IMPORTANT).

¢ %let variablel = Time;
e %let code = variablel;
e %put &&code;

&&code
Macro-Compiler
&& code
First pass through & cc;de
&code /Second pass through
variablel

¢ %let variablel = Time;
e %let code = variablel;
e %put &&&code;

&&&code

Macro-Compiler |
&& &code
First pass through ! .
& _ variablel
&variablel
Second pass through .
— Time

99



4.3 SAS Macro programming statements

The ‘if” statements and ‘do’ loops discussed previously work in a very similar
way to if statements and do loops within macros. The only modification is that
these can be evaluated within the macro compiler before the entire submitted
code is resolved. For this to work we need to use the “%if”, “%then” and “%else”
statements when evaluating a conditional statement on a macro variable. The
following code is an example of this:

%macro shopping(spend,trips);

data JJJ_after_shopping(keep= Name 0ld_savings New_savings);
set mat013.jjj;

%if &spend<O %then %put Carefull the spend is negative!;
%else Y%put The spend is positive;
0ld_savings=savings_in_pounds;
New_savings=savings_in_pounds—-&trips*&spend;

run;

Y%mend ;

The “%do” statement can be used in conjunction with “%if” statements. The
following code creates one of two data sets depending on the sign of the macro
variable spend.

%macro shopping(spend,trips);

%if &spend<O %then Y%do;

data JJJ_after_saving(keep= Name 0ld_savings New_savings);
set mat013.jjj;

%end;

%else %do;

data JJJ_after_spending(keep= Name 0ld_savings New_savings);
set mat013.jjj;

%end;

0ld_savings=savings_in_pounds;
New_savings=savings_in_pounds-&trips*&spend;

run;

Y%mend ;

Another use of the %do statement is in iterative statements (as before). The
difference being that on this occasion the %do statement creates macro variables.

60



The following code creates various data sets each with a title indexed by a macro
variable.

%macro shopping(spend);
%do trips=1 %to 10;

data JJJ_after_saving_&trips(keep= Name 0ld_savings New_savings);
set mat013.jjj;

0ld_savings=savings_in_pounds;
New_savings=savings_in_pounds-&trips*&spend;

run;
%end;
%mend ;

The %do statement can also be used in conjunction with the %while and %until
statements.

The way SAS compiles macro code can be an extremely useful tool. For example
the following code creates a macro that imports 5 separate csv file:

%macro import;
%do i=1 %to 5;
proc import datafile="\~/File_&i.csv"
out=File_&i
dbms=csv
replace;
getnames=yes;
run;
%end;
Y%mend ;

The output is shown.

61



SAS: Explorer

File Edit View Tools Solutions Help

B rile 1 -
File 2
B rile 3
B File 4
B File 5
/

4.4 Macro functions

Since all macro variables are text strings it is not possible to directly perform
computations on macro variables that contain numbers. The following code
would give an error:

%let var=5**2;

hput &var;

One must make use of the following function to be able to evaluate (in the macro
compiler) such computations:

%let var=5**2;

%put %eval (&var);

%put %sysevalf (&var);

The “%sysevalf” function works in a very similar way to the “%eval” but will

compute fractions such as 9/2 in the Real numbers (as opposed to eval which
would round the result).

62



Another use of macro functions is when it comes to ignoring certain SAS key-
words. The following code puts two different statements to the log.

%let myvar=abc;
hput %str(this string is; &myvar);
%put Ynrstr(this string is; &myvar %let);

The first macro function “%str” ignores the “;” and treats it as a string. The

second macro function “nrstr” ignores all the SAS statements including “;,&”
and 44%77-

There are a large number of macro functions and it’s worth looking around if you
think there’s one you might need. Also, of interest are the following commands
(look them up) that can help with debugging:

1. mprint

writes all non-macro code generated by the macro
2. mlogic

o when a macro begins executing

¢ values of macro parameters

e when program statements execute

o the status of any %if or %do condition

o when a macro stops executing
3. Symbolgen

o writes information concerning the resolution of macro variables to the log

5 Chapter 5 Further procs

In this chapter we will examine three particular procedures in SAS.

1. proc sql: a procedure allowing for the use of sql syntax in SAS;
2. proc fecmp: a procedure allowing for the creation of custom functions;

3. proc optmodel: a package that allows for optimisation in SAS.

63



5.1 Proc sql
5.1.1 Basic SQL

SQL is a language designed for querying and modifying databases. Used by a
variety of database management software suites:

1. Oracle
2. Microsoft ACCESS
3. SPSS

SQL uses one or more objects called TABLES where: rows contain records
(observations) and columns contain variables. Importantly,

1. Starts with proc sql; (as expected)

2. Ends with quit; (some interactive procedures do)

The following code creates a data set called test in the work library as a copy
of the mat013.mmm data set:

proc sql;

create table test as
select *

from mat013.mmm;
quit;

The “*” command tells SAS to take all variables from mat013.mmm. We can
however specify exactly what variables we want:

proc sql;

create table test as
select Name, Age, Sex
from mat013.mmm;
quit;

We can also create new variables:

proc sql;

create table test as

select Name, Age, Sex, weight_in_kg/(height_in_metres**2) as bmi
from mat013.mmm;

quit;

64



5.1.2 Further SQL

In this section we'll take a look at what else SAS can do. For the purpose of
the following examples let’s write a new data set:

data mat013.example;
input Varl $ Var2 Var3 $ Var 4 Var5 $;
cards;

QO QW E >
NN -
QW= = =
N~ NN
MmoQww

)

run;

Some simple SQL code very easily helps us to get rid of duplicate rows (this
can be very helpful when handling real data). To do this we use the “distinct”
keyword.

proc sql;

create table example as
select distinct *

from mat013.example;
quit;

We can also select particular variables:

proc sql;

create table example as

select distinct varl, var2, var3
from mat013.example;

quit;

We can also use the “where” statement to select variables that obey a particular
condition:

proc sql;

create table example as
select *

from mat013.example
where var2<=var4;

quit;

65



We can sort data sets using the “order by” keyword:

proc sql;

create table example as
select distinct *

from mat013.example
order by varil;

quit;

A very nice application of SQL is in the aggregation of summary statistics. The
following code creates a new variable that gives the average value of var2. The
value of this variable is the same for all the observations:

proc sql;

create table example as

select * mean(var2) as average_of_var2
from mat013.example;

quit;

We could however get something a bit more useful by aggregating the data using
a “group” statement:

proc sql;

create table example as

select varl, mean(var2) as average_of_var2
from mat013.example

group by varl;

quit;

5.1.3 Joining tables with SQL

A very common use of SQL within SAS is to carry out “joins” which are equiv-
alent to a merger of data sets. There are 4 types of joins to consider:

1. inner join

1. output table only contains rows common to all tables

2. variable attributes taken from left most table
2. outer join left

1. output table contains all rows contributed by the left table

2. variable attributes taken from left most table

66



3. outer join right

1. output table contains all rows contributed by the right table

2. variable attributes taken from right most table
4. outer join full

1. output table contains all rows contributed by all tables

2. variable attributes taken from left most table

To work with these examples let’s use the data sets created with the following
code:

data mat013.dogs;
input Owner $ Name $;
cards;

Jeff Ruffus

Janet Sam

Paul .

Joanna .

run;

data mat013.cats;
input Owner $ Name $;
cards;

Jeff Kitty

Paul .

Joanna Tinkerbell
Vince Chick

run;

The following code carries out an inner join of these two datasets also changing
the name of the “Name” variable depending on which data set it was from, the
output of which is shown.

proc sql;

create table merged_table as

select a.Owner,a.Name as Dog_Name, b.Name as cat_Name
from mat013.dogs as a, matOl13.cats as b

where a.0Owner=b.0wner;

quit;

67



SAS: VIEWTABLE: Work.Merged_table

File Edit View Tools Data Solutions

Jeff Ruffus Kitty
FPaul

Joanna Tinkerbe

The following code carries out a left outer join, the output of which is shown.

proc sql;

create table merged_table as

select a.Owner,a.Name as Dog_Name, b.Name as cat_Name
from mat013.dogs as a

left join matO13.cats as b

on a.0wner=b.0wner;

quit;

SAS: VIEWTABLE: Work.Merged_table

File BEdit View Tools Data Solutions Help

Janet

Jeff Ruffus Kitty
Joanna Tinkerbe
Paul

The following code carries out a right outer join, the output of which is shown.

proc sql;

68



create table merged_table as

select a.Owner,a.Name as Dog_Name, b.Name as cat_Name
from mat013.dogs as a

right join matO13.cats as b

on a.0Owner=b.0wner;

quit;

SAS: VIEWTABLE: Work.Merged_table

File Edit View Tools Solutions Help

E@ta

Ruffus

Jeff Kitty

Joanna Tinkarbe

Paul

Chick

The following code carries out a full outer join, the output of which is shown.

proc sql;

create table merged_table as

select a.Owner,a.Name as Dog_Name, b.Name as cat_Name
from mat013.dogs as a

full join matOl13.cats as b

on a.0Owner=b.0wner;

quit;

69



SAS: VIEWTABLE: Work.Merged_table

File Edit View Tools Data Solutions Help

Janet Sam
Jeff Ruffus Kitty

Joanna Tinkerbe

Paul

Chick

5.2 Proc fcmp

In previous chapters we have seen various in built functions in SAS. For various
reasons it might be required to create a custom function. We will do this with
the “fcmp” procedure. This procedure allows us to create custom functions
using data step syntax (which allows for “if” and “do” statements to be used).
The following code creates a function called “In” that gives the natural log of a
number:

proc fcmp outlib=sasuser.funcs.ln;
function 1n(x);

y=log(x);

return(y);

endsub;

quit;

This code in fact creates a function named “In” in a package named “funcs”.
The package is stored in the data set sasuser.funcs. To use this function we need
to tell SAS which data set contains the function. We do this with the following
piece of code:

option cmplib=sasuser.funcs;
It is then straightforward to call this function:

option cmplib=sasuser.funcs;

70



data test;
x=5;
y=log(x) ;
new_Y=1n(x);
run;

The main advantage to using this procedure is that we can include complex data
step syntax. The following function takes two inputs and gives a geometric sum:

proc fcmp outlib=sasuser.funcs.Gsum;
function Gsum(i,n);

s=0;

do k=0 to n;

s=s+i*xk;

end;

return(s);

endsub;

quit;

Let’s test this on the following data set:

data test;
input n 1i;
cards;

1

DO WN -
N NNDND -

run;

data G_sum_test;
set test;
y=Gsum(i,n);
run;

5.3 Optimisation
Another powerful aspect of SAS is it’s optimisation engine. We can optimise

various types of problems using the “optmodel” procedure. The following code
optimises the polynomial: 22 — x — yx + 2.

71



proc optmodel;

var Xx,Y;

min zZ=x**2-X-2*y-X*y+y**2;
solve;

print x y;

quit;

The output is shown, note that SAS automatically chooses a solver (in this case
Non Linear Programming and Interior Point methods).

SAS; Output-Untitled

File Edit View Tools Solutions Help

The SAS System

The OPTMODEL Procedure

Solution Summary

Sclver

Objective Function
Solution EStatus
Objective Value
Iterations

Optimality Error
Infeasibility
b1

1.3333

NLP/INTERIORPOINT
z

Optimal
-2.333333333

2

6.694645E-14
0

b

l.6867

=l
We can also include a domain:

proc optmodel;

var x<=0,y>=2;

min z=x**2-x-2*y-xX*y+y**2;
solve;

72

L



print x y;
quit;

SAS: Output-Untitled

File Edit View Tools Solutions Help

The SAS System 08 jﬂ
The OPTMODEL Frocedurse
Solution Summary
Solver NLP/INTERIORFOINT
Objective Function z
Solution Status Optimal
Okjective Value 2.458416E-8
Iterations 4
Optimality Error BE-9
Infeasibility 0
X ¥
-4.0954E-09 2
_
/
H ] =

We can solve further more complex optimisation problems, including constraints
using the ‘constraints’ keyword:

proc optmodel;

var x1>=0, x2>=0, x3>=0;

max f=x1+x2+x3;

constraint cl: 3*x1+2*xx2-x3<=1;
constraint c2: -2*%x1-3*%x2+2%x3<=1;
solve;

print x1 x2 x3;

quit;

The output is shown (note the solver used was a variant of simplex).

73



SAS: Output-Untitled

File FEdit View Tools Solutions Help

The SAS System

The OPTMODEL Procedure

Solution Summary

Solver

Objective Function
Solution Status
Objective Value
Iterations

Primal Infeasibility
Dual Infeasibility
Bound Infeasibility

x1 x2

Dual Simplex
f

Optimal

g8

3

x3

0e jﬂ

L

=

It is also possible to read in the constraints of a particular optimisation problem
from a data set. This can prove to be very handy when dealing with huge
problems so it’s worth spending time researching that approach.

74



	Chapter 1 - Introduction
	The Environment
	Libraries
	Creating a new library

	Importing Data
	Exporting data sets

	Chapter 2 - Basic Statistical Procedures
	Procedures
	A list of procedures
	Utility procedures
	Correlations
	Linear Models
	Plots and charts

	Exporting output

	Chapter 3 - Manipulating data
	Data steps
	The program data vector
	Creating new variables
	Dropping and keeping variables.
	Renaming variables
	Operations across rows

	Handling dates

	Chapter 4 Programming
	Flow control
	How does SAS compile code?
	Macro variables

	SAS Macro programming statements
	Macro functions

	Chapter 5 Further procs
	Proc sql
	Basic SQL
	Further SQL
	Joining tables with SQL

	Proc fcmp
	Optimisation


