##Cooperative Game Theory ###Introduction to the Shapley Value --- ####Vincent Knight [www.vincent-knight.com](http://www.vincent-knight.com)
##Alice and Bob share a taxi: --- - It costs Alice £5 to get home. - It costs Bob £12 to get home (this will be the total fare). - Alice lives on Bob's way home. ---

When Alice gets out of the cab, how much should she pay?

Cooperative Games


  • $N=\{1,\dots,n\}$ players.
  • Coalitions $S\subseteq N$.
  • Examples:

    • $S_1=\{2,5\}$
    • $S_2=\{1\}$
    • $S_2=N$
    • $S_2=\emptyset$

Characteristic Function Games


A characteristic game $G$ is given by a pair: $(N,v)$. Where: $$v:2^{N}\to\mathbb{R}$$ is a characteristic function which maps each coalition $S\subseteq N$ to a real number $v(S)$.

Taxi Problem



$N=\{A,B\}$ and we have:

  • $v(\emptyset)=0$
  • $v(A)=5$
  • $v(B)=12$
  • $v(A,B)=12$

Monotone Games


A characteristic function game $G=(N,v)$ is said to be monotone if it satisfies $v(S_2)\geq v(S_1)$ for all pairs $S_1\subseteq S_2$.


Superadditive Games


A characteristic function game $G=(N,v)$ is said to be superadditive if it satisfies $v(S_1\cup S_2)\geq v(S_1)+v(S_2)$ for all pairs $S_1,S_2\subseteq N$.


Solution Concepts


The 'solution' of a superadditive game corresponds to a vector: $x\in\mathbb{R}^{|N|}_{\geq0}$ that satisfies: $$\sum_{i\in N}x_i=v(N)$$

Fair Distribution


  1. Efficiency: $\sum_{i\in N}x_i=v(N)$;
  2. Null player: if $i$ does not contribute, then $x_i=0$;
  3. Symmetry: if $i$ and $j$ are symmetric in then $x_i=x_j$;
  4. Additivity: (look it up if you're interested).

Taxi Problem



$\pi$ Alice Bob
(A,B) 5 7
(B,A) 0 12
$\phi$ 2.5 9.5

Shapley Value


Given a characteristic function game $G=(N,v)$ the Shapley value of a player $i\in N$ is given by: $$\phi_{i}(G)={1\over |N|!}\sum_{\pi\in\Pi_N}\Delta_{\pi}^{G}(i)$$

##Why am I telling you this?
##Applying this to group work --- - Assume Amy, Bernard and Caroline work on a group project. - Assume the marking criteria states: 70% output and 30% group work. - Assume the total mark given to the project is 85%.

Contributions


$S$ $v(S)$
$A$ 40
$B$ 40
$C$ 20
$\{A,B\}$ 70
$\{A,C\}$ 60
$\{B,C\}$ 40

Shapley Value Calculation


$\pi$ Amy Bernard Caroline
(A,B,C) $40$ $30$ $30$
(A,C,B) $40$ $40$ $20$
(B,A,C) $30$ $40$ $30$
(B,C,A) $60$ $40$ $0$
(C,A,B) $40$ $40$ $20$
(C,B,A) $60$ $20$ $20$
$\phi$ $45$ $35$ $20$

Mark Calculation


$$\text{m}(i)=\text{M}\times\left(\text{OP}+\text{CW}\times{\phi(i)\over \max_j{\phi(j)}}\right)$$

Fair Marks


  1. Efficiency: only way to maximise group mark is equal contribution;
  2. Null player: if $i$ does not contribute, then $m(i)=0$;
  3. Symmetry: if $i$ and $j$ contribute equally, they get the same mark.
$$\text{m}(A)=85\times(.7+.3)=85$$
$$\text{m}(B)=85\times\left(.7+.3\times {35\over 45}\right)={238\over 3}\approx 79.33$$
$$\text{m}(C)=85\times\left(.7+.3\times{20\over45}\right)={425\over 6}\approx 70.83$$
##Resources --- - [A sage interact](http://interact.sagemath.org/node/80) - [A spreadsheet](https://docs.google.com/spreadsheet/ccc?key=0Ah_zrw5uAafbdFBfVmdyUUZweXhFNTRTWGlSOXlKNUE)

The real problem...


How do we get $\phi$?