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4 (a) Provide definitions for the following terms:

• Normal form game.

A N player normal form game consists of:

– A finite set of N players;

– Strategy spaces for the players: S1, S2, S3, . . . SN ;

– Payoff functions for the players: ui : S1 × S2 · · · × SN → R
[1]

• Strictly dominated strategy.

In an N player normal form game. A pure strategy si ∈ Si is said to be
strictly dominated if there is a strategy σi ∈ ∆Si such that ui(σi, s−i) >
ui(si, s−i) for all s−i ∈ S−i of the other players.

[1]

• Weakly dominated strategy.

In an N player normal form game. A pure strategy si ∈ Si is said to be
weakly dominated if there is a strategy σi ∈ ∆Si such that ui(σi, s−i) ≥
ui(si, s−i) for all s−i ∈ S−i of the other players and there exists a strategy
profile s̄ ∈ S−i such that ui(σi, s̄) > ui(si, s−i) . [1]

• Best response strategy.

In an N player normal form game. A strategy s∗ for player i is a best response
to some strategy profile s−i if and only if ui(s

∗, s−i) ≥ ui(s, s−i) for all s ∈ Si.
[1]

• Nash equilibrium.

In an N player normal form game. A Nash equilibrium is a strategy profile
τ = (s̃1, s̃2, . . . , s̃N) such that:

ui(s̃) ≥ ui(s̄i, s̃−i) for all i

[1]

For the remainder of this question consider the battle of the sexes game:(
(3, 2) (0, 0)
(1, 1) (2, 3)

)
(b) By clearly stating the techniques used, obtain all (if any) pure Nash equilibria.

By identifying best responses under the assumption of common knowledge of
rationality we obtain r1, s1 and r2, s2 as Nash equilibria.(

(3, 2) (0, 0)
(1, 1) (2, 3)

)
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[4]

(c) Plot the utilities to player 1 (the row player) assuming that the 2nd player (the
column player) plays a mixed strategy: σ2 = (y, 1− y).

We have:

u1(r1, σ2) = 3y

and

u1(r2, σ2) = y + 2− 2y = 2− y

[1]

Which gives:

[1]

(d) Plot the utilities to player 2 (the column player) assuming that the 1st player (the
row player) plays a mixed strategy: σ1 = (x, 1− x).

We have:

u2(σ1, s1) = 2x+ 1− x = 1 + x

and

u2(σ1, s2) = 3− 3x

[1]

Which gives:
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[1]

(e) Assuming that player 1 plays the mixed strategy σ1 = (x, 1−x), show that player
1’s best response x∗ to a mixed strategy σ2 = (y, 1− y) is given by:

x∗ =


0, if y < 1/2

1, if y > 1/2

indifferent, otherwise

We have u1(r2, σ2) = u1(r1, σ2) ⇒ y = 1/2. From the plots we see that if y < 1/2
then player 1’s best response is to play r2 which corresponds to x = 0, similarly
for y > 1/2 and finally if y = 1/2 player 1 is indifferent.

[2]

Similarly show that player 2’s best response y∗ is given by:

y∗ =


0, if x < 1/2

1, if x > 1/2

indifferent, otherwise

We have u2(σ1, s1) = u1(σ1, s2)⇒ x = 1/2. From the plots we see that if x < 1/2
then player 2’s best response is to play s2 which corresponds to y = 0, similarly
for x > 1/2 and finally if x = 1/2 player 2 is indifferent.

[2]

(f) Use the above to obtain all Nash equilibria for the game.

We see that the only mixed strategy that is a pair of best responses is (σ1, σ2) =
((1/2, 1/2), (1/2, 1/2)). [2]

(g) Confirm this result by stating, proving and using the Equality of Payoffs theorem.

The equality of payoffs theorem states:

In an N player normal form game if the strategy profile (σi, s−i) is a Nash equi-
libria then:
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ui(σi, s−i) = ui(s, s−i) for all s ∈ S(σi) for all 1 ≤ i ≤ N

[1]

Proof:

If |S(σi)| = 1 then the proof is trivial.

We assume that |S(σi)| > 1. Let us assume that the theorem is not true so that
there exists s̄ ∈ S(σ) such that

ui(σi, s−i) 6= ui(s̄, s−i)

Without loss of generality let us assume that:

s̄ = argmaxs∈S(σ)ui(s, s−i)

Thus we have:

ui(σi, s−i) =
∑

s∈S(σi)

σi(s)u(s, s−i)

≤
∑

s∈S(σi)

σi(s)u(s̄, s−i)

≤ u(s̄, s−i)
∑

s∈S(σi)

σi(s)

≤ u(s̄, s−i)

Giving:

ui(σi, s−i) < ui(s̄, s−i)

which implies that (σi, s−i) is not a Nash equilibrium.

[4]

To verify the mixed Nash equilibria found previously we apply the theorem:

u1(r1, σ2) = u1(r2, σ2)⇒ ỹ = 1/2

u2(σ1, s1) = u2(σ1, s2)⇒ x̃ = 1/2

As required.

[1]
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5 Consider the following stage game:(
(2, 2) (5, 0)
(0, 5) (4, 4)

)
This game shall be referred to as the Prisoner’s Dilemma. The first strategy for both
players will be referred to as ‘Cooperate’ (C) and the second strategy will be referred
to as ‘Defect’ (D). Players aim to minimise their payoffs.

Consider the following strategies:

• sC : Always cooperate;

• sD: Always defect;

• sG: Start by cooperating until your opponent defects at which point defect in all
future stages.

Assume S1 = S2 = {sC , sD, sG}.

(a) Assuming a discounting factor of δ, obtain the utility to both players if the strategy
pair (sC , sC) is played.

U1(sC , sC) = U2(sC , sC) =
∞∑
t=1

δt−12 =
2

1− δ

[2]

(b) Assuming a discounting factor of δ, obtain the utility to both players if the strategy
pair (sD, sD) is played.

U1(sD, sD) = U2(sD, sD) =
∞∑
t=1

δt−14 =
4

1− δ

[2]

(c) For what values of δ is (sG, sG) a Nash equilibrium? Recall that players aim
to minimise their payoffs.

Assuming both players play sG, then sG = sC and the outcome is 2
1−δ . The earlier

deviation to sD the more rewarding to the deviating player (all future rewards are
more heavily discounted).

[1]

Assuming player 2 deviates at the first stage we have:

U2(sG, sD) = 0 +
∞∑
t=2

δt−14 =
4

1− δ
− 4

[2]
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Recalling that players aim to minimise their utilities, this deviation is rational iff:

4

1− δ
− 4 <

2

1− δ
⇒ δ < 1/2

[2]

(d) Define the average payoff in an infinitely repeated game.

The average payoff is given by:

1

T̄
Ui(r, s) = (1− δ)Ui(r, s)

[1]

(e) Plot the feasible average payoffs and the individually rational payoffs for the
Prisoner’s Dilemma. Recall that players aim to minimise their payoffs.

u1

u2

(0, 0)

(0, 5)

(5, 0)

(4, 4)

Feasible average payoffs

Individually rational payoffs

[4]

(f) Prove the following theorem (for games where players aim to minimise their
payoffs):

“Let u∗1, u
∗
2 be a pair of Nash equilibrium payoffs for a stage game. For every

individually rational pair v1, v2 there exists δ̄ such that for all 1 > δ̄ > δ > 0 there
is a subgame perfect Nash equilibrium with payoffs v1, v2.”

Let (σ∗1, σ
∗
2) be the stage Nash profile that yields (u∗1, u

∗
2). Now assume that playing

σ̄1 ∈ ∆S1 and σ̄2 ∈ ∆S2 in every stage gives (v1, v2) (an individual rational payoff
pair).

[1]

Consider the following strategy:

“Begin by using σ̄i and continue to use σ̄i as long as both players use the agreed
strategies. If any player deviates: use σ∗i for all future stages.”
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[1]

We begin by proving that the above is a Nash equilibrium.

Without loss of generality if player 1 deviates to σ′1 ∈ ∆S1 such that u1(σ′1, σ̄2) <
v1 in stage k then:

U
(k)
1 = (k − 1)v1 + u1(σ′1, σ̄2) + u∗1

(
1

1− δ
−

k∑
t=1

δt−1

)
[2]

Recalling that player 1 would receive v1 in every stage with no deviation, the
biggest gain to be made from deviating is if player 1 deviates in the first stage (all
future gains are more heavily discounted). Thus if we can find δ̄ such that δ̄ > δ

implies that U
(1)
1 ≥ v1

1−q then player 1 has no incentive to deviate.

[2]

U
(1)
1 = u1(σ′1, σ̄2) + u∗1

δ

1− δ
≥ v1

1− δ
(1− δ)u1(σ′1, σ̄2) + u∗1δ ≥ v1

u1(σ′1, σ̄2)− v1 ≥ δ(u1(σ′1, σ̄2)− u∗1)

[2]

as u1(σ′1, σ̄2) < v1 < u∗1, taking δ̄ =
u1(σ′1,σ̄2)−v1
u1(σ′1,σ̄2)−u∗1

gives the required required result

for player 1 and repeating the argument for player 2 completes the proof of the
fact that the prescribed strategy is a Nash equilibrium.

[1]

By construction this strategy is also a subgame perfect Nash equilibrium. Given
any history both players will act in the same way and no player will have an
incentive to deviate:

• If we consider a subgame just after any player has deviated from σ̄i then both
players use σ∗i .

• If we consider a subgame just after no player has deviated from σi then both
players continue to use σ̄i.

[2]
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6 (a) Define a routing game (G, r, c).

A routing game (G, r, c) is defined on a graph G = (V,E) with a defined set of
sources si and sinks ti. Each source-sink pair corresponds to a set of traffic (also
called a commodity) ri that must travel along the edges of G from si to ti. Every
edge e of G has associated to it a nonnegative, continuous and nondecreasing cost
function (also called latency function) ce. [2]

(b) Define a Nash flow and from first principles obtain the Nash flow for the following
game:

For a routing game (G, r, c) a flow f̃ is called a Nash flow if and only if for every
commodity i and any two paths P1, P2 ∈ Pi such that fP1 > 0 then:

cP1(f) ≤ cP2(f)

In other words a Nash flow ensures that all used paths have minimal costs.

[1]

c(
x)

=
x

c(x) =
1

c(x) =
1

c(
x)

=
x

1

For this game we see that if both paths are used then we must have:

x+ 1 = (1− x) + 1

[1]

(assuming x is the quantity of traffic using the top path)

thus the Nash flow is given by f̃ = (1/2, 1/2).

[1]

(c) Define an optimal flow and from first principles obtain the optimal flow for the
above game.

For a routing game (G, r, c) we define the optimal flow f ∗ as the solution to the
following optimisation problem:

Minimise
∑

e∈E ce(fe):

Subject to:
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∑
P∈Pi

fP = ri for all i

fe =
∑

P∈P if e∈P

fP for all e ∈ E

fP ≥ 0

[2]

In our case C(x) = x2 + x+ 1− x+ (1− x)2 = 2x2 − 2x+ 2, differentiating and
equating to 0 we see that f ∗ = (1/2, 1/2).

[1]

(d) State a theorem connecting the following function Φ to the Nash flow of a routing
game:

Φ(f) =
∑
e∈E

∫ fe

0

ce(x)dx

A feasible flow f̃ is a Nash flow for the routing game (G, r, c) if and only if it is a
minima for Φ(f).

[2]

(e) Using the theorem from (d) confirm the Nash flow previously found in (b).

For our game we have: Φ(x) = x2/2 + x+ x+ x2/2 = x(1 + x)

Differentiating and equating to 0 gives f̃ = (1/2, 1/2) as required.

[2]

(f) State a theorem connecting the marginal cost c∗(x) = d(xc(x))
dx

to the optimal flow
of a routing game.

A feasible flow f ∗ is an optimal flow for (G, r, c) if and only if f ∗ is a Nash flow
for (G, r, c∗).

[2]

(g) Using the theorem from (f) confirm the optimal flow previously found in (c) .

We have the cost of both paths: 2x + 1 thus equating 2x + 1 = 2− 2x + 1 gives
f ∗ = (1/2, 1/2) as required.

[2]

(h) The expected time spent in an M/M/1 queue at steady state is given by:

Wq =
λ

µ(µ− λ)

Where µ, λ are the mean service and inter arrival rates and λ < µ respectively.
Explain how a system with two M/M/1 queues and players choosing which queue
to join can be studied using the following routing game:
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s t

x
µ1(µ1−x)

x
µ2(µ2−x)

λ

The function Wq is nonnegative, continuous and nondecreasing in λ for 0 ≤ λ < µ.
Thus using these functions as latency functions in λ assuming each M/M/1 queue
has service rate parameter µi will give the described model. This holds since as
long as the total arrival rate is less than the service rate at each queue. Finally,
as a Markov process can be ‘thinned’ to another Markov process the steady state
formulae will still hold. [2]

(i) Obtain the Nash and Optimal flows for the game in (h) with µ1 = 4, µ2 = 3 and
λ = 2.

You might find it useful to know that the equation:

x4 − 2x3 + x2 − 420x+ 324 = 0

has a single solution in the range 0 ≤ x < 2 given by x ≈ .772.

For the Nash flow we need to equate both costs:

x

3(3− x)
=

2− x
4(4− (2− x))

which gives:

8x+ 4x2 − 18 + 6x+ 9x− 3x2 = x2 + 23x− 18 = 0

which has non-negative root:

√
601− 23

2
≈ .7577
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Thus the Nash flow is given by: f̃ = (.7577, 1.2423) (we see that the slow queue
sees more players).

[3]

To obtain the Optimal flow we equate the marginal costs:

c∗ =
1

dx

x2

µ(µ− x)
=

2x

(µ− x)µ
+

x2

(µ− x)2µ

Thus we now equate both path costs:

2x

3(3− x)
+

x2

3(3− x)2
=

4− 2x

4(4− 2 + x)
+

(2− x)2

4(4− 2 + x)2

which is equivalent to:

x4 − 2x3 + x2 − 420x+ 324

12 (x− 3)2(x+ 2)2 = 0

Which implies (from the tip) f ∗ = (.7715, 1.2285) (we see that the slow queue is
slightly less busy).

[4]
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