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Game Theory: Introduction

Often decision analysis does not only depend on chance but on the
decisions made by others: interactive decision problems.

Such decision problems are called games. The individuals making
the decisions are called players.
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2 Player Static Games
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2 Player Static Games

We shall consider 2 player static games. Assume two players have
two sets of available strategies: S1 = {r1, . . . , rm} and
S2 = {s1, . . . , sn}. Let u1(r , s), u2(r , s) be the utility gained by
player 1 and 2 for a pair of strategies (s, r).

s1 s2 . . . sn
r1 (u1, u2) (u1, u2) . . . (u1, u2)

r2 (u1, u2) (u1, u2) . . . (u1, u2)
...

...
...

. . .
...

rm (u1, u2) (u1, u2) . . . (u1, u2)

Both players aim to choose from their available strategies so as to
maximise u1 and u2.
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Example: Prisoner’s Dilemma

Two criminal suspects have been caught. They have been isolated
and are being questioned separately by the police. The following
offer is made to both suspects:

• If one confesses that they both committed the crime then the
confessor will be set free and the other will spend 5 years in
jail.

• If both confess, then they will each get a 4 year sentence.

• If neither confess, then they will each spend 2 years in jail.
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Example: Prisoner’s Dilemma

Both players have 2 possible strategies:

• Keep quite (Q)

• Squeal (S)

Q S

Q (-2,-2) (-5,0)

S (0,-5) (-4,-4)

The “solution” of the game is (S ,S). Both criminals squeal and go
to prison for 4 years (Instead of 2).
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Solving games using Dominance

We solved the prisoners’ dilemma in an intuitively simple manner
by observing the strategy S was always “better” then Q. We
attempt to solve games by eliminating poor strategies for each
player.

• A strategy for player 1, ri is, strictly dominated by rj if

u1(ri , s) < u1(rj , s) for all s ∈ S2

• A strategy for player 1, ri is, weakly dominated by rj if

u1(ri , s) ≤ u1(rj , s) for all s ∈ S2

and there exists a strategy sl ∈ S2 such that:

u1(ri , sl) < u1(rj , sl)
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Example

Consider the following game:

s1 s2
r1 (3, 3) (2, 2)

r2 (2, 1) (2, 1)

For player 2, s1 weakly dominates s2. For player 1, r1 weakly
dominates r2. Thus (r1, s1) is the “solution” of this game.
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Common Knowledge of Rationality

To solve a game by elimination of dominated strategies we have to
assume that the players are rational. However, we can go further,
if we also assume that:

• The players are rational.

• The players all know that the other players are rational.

• The players all know that the other players know that they are
rational.

• . . .

This chain of assumptions is called Common Knowledge of
Rationality (CKR). By applying the CKR assumption, we can try
to solve games by iterating the elimination of dominated strategies.
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Example

s1 s2 s3
r1 (1, 0) (1, 2) (0, 1)

r2 (0, 3) (0, 1) (2, 0)

Initially player 1 has no dominated strategies. For player 2, s3 is
dominated by s2. Now, r2 is dominated by r1. Finally, s1 is
dominated by s2. Thus (r1, s2) is the “solution” of this game.
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Pure Nash Equilibrium
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(Pure) Nash Equilibrium

Importantly, certain games cannot be solved using the iterated
elimination of dominated strategies:

s1 s2 s3
r1 (10, 0) (5, 1) (4,−2)

r2 (10, 1) (5, 0) (1,−1)

s1 s2 s3
r1 (1, 3) (4, 2) (2, 2)

r2 (4, 0) (0, 3) (4, 1)

r3 (2, 5) (3, 4) (5, 6)

(exercise: why does iterated elimination fail here?)
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Nash Equilibrium

A (pure) Nash equilibrium is a pair of strategies (r̃ , s̃) such that

u1(r̃ , s̃) ≥ u1(r , s̃) for all r ∈ S1

and
u2(r̃ , s̃) ≥ u2(r̃ , s) for all s ∈ S2
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Testing for Nash Equilibrium

One can find Nash equilibria by checking all strategy pairs and
seeing if either player can improve their outcome.

s1 s2 s3
r1 (10, 0) (5, 1) (4,−2)

r2 (10, 1) (5, 0) (1,−1)

Nash Equilibria need not be unique!
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Best response strategies

A strategy for player 1 r∗ is a best response to some fixed strategy
for player 2, s if:

u1(r∗, s) ≥ u1(r , s) for all r ∈ S1

A strategy for player 2 s∗ is a best response to some fixed strategy
for player 1, r if:

u2(r , s∗) ≥ u2(r , s) for all s ∈ S2

To use this definition to find Nash Equilibria we find for each
player, the set of best responses to every possible strategy of the
other player. We then look for pairs of strategies that are best
responses to each other.
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Example

s1 s2 s3
r1 (1, 3) (4, 2) (2, 2)

r2 (4, 0) (0, 3) (4, 1)

r3 (2, 5) (3, 4) (5, 6)
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Mixed Nash Equilibrium
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Mixed Strategies

Importantly some games do not have pure Nash equilibria!
Consider the following game:

Two players each place a coin on a table, either “heads up”
(strategy H) or “tails up” (strategy T ). If the pennies match,
player 1 wins, if the pennies differ, then player 2 wins.

H T

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)
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Mixed Strategies

In order to solve such games, we need to consider mixed strategies.
I.e. we attach a distribution to the set of strategies of each player.

In the matching pennies example, let ρ = (p, 1− p) be the mixed
strategy for player 1. I.e. player 1 plays H with probability p and
plays T with probability 1− p.

Similarly let σ = (q, 1− q) be the mixed strategy for player 2. I.e.
player 2 plays H with probability q and plays T with probability
1− q.
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Mixed Strategies

Consider the payoff to player 1:

u1(ρ, σ) = pq − p(1− q)− (1− p)q + (1− p)(1− q)

= 1− 2q + 2p(2q − 1)

= (2q − 1)(2p − 1)

• If q < 1
2 then player 1s best response is to choose p = 0 (i.e.

always play T ).

• If q > 1
2 then player 1s best response is to choose p = 1 (i.e.

always play H).

• If q = 1
2 then player 1s best response is to play any mixed

strategy.
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Mixed Strategies

Consider the payoff to player 2:

u2(ρ, σ) = −pq + p(1− q) + (1− p)q − (1− p)(1− q)

= −1 + 2q − 2p(2q − 1)

= (2q − 1)(1− 2p)

• If p < 1
2 then player 2s best response is to choose q = 1 (i.e.

always play H).

• If p > 1
2 then player 2s best response is to choose q = 0 (i.e.

always play T ).

• If p = 1
2 then player 2s best response is to play any mixed

strategy.
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Mixed Strategies

The only pair of strategies that are best responses to each other is
ρ = σ =

(
1
2 ,

1
2

)
.

This method of finding mixed Nash equilibria is called: the best
response method. (Of course it also finds the pure Nash equilibria)

Exercise: Do the same exercise for the popular game “rock,paper
scissors”.
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Example

s1 s2
r1 (0, 0) (2, 1)

r2 (1, 2) (0, 0)

As before:
u1(ρ, σ) = q + p(2− 3q)
u2(ρ, σ) = p + q(2− 3p)

Best responses for player 1:

ρ∗ =


(0, 1) if q > 2

3

(1, 0) if q < 2
3

(x , 1− x) with 0 ≤ x ≤ 1 if q = 2
3
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Example

s1 s2
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Example

We plot both best responses:
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Example

Thus for this example there are 3 Nash equilibria:

(r1, s2), (r2, s1) and (ρ, σ) with ρ = σ =

(
2

3
,

1

3

)
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Equality of Payoffs

The support of a strategy ρ is the set S(ρ) of all strategies for
which ρ has non zero probability.

For example, if the strategy set is {A,B,C} then the support of
the mixed strategy

(
1
3 ,

2
3 , 0
)

is {A,B}. Similarly the support of the
mixed strategy

(
1
2 , 0,

1
2

)
is {A,C}.

This leads to a very powerful result.
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Equality of Payoffs Theorem

Let (ρ, σ) be a Nash equilibrium, and let S∗
1 be the support of ρ.

Then:
u1(ρ, σ) = u1(r , σ) for all r ∈ S∗

1
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Equality of Payoffs

Consider the matching pennies game. Let σ be the mixed strategy
of player 2 with a chance of playing H of q and a chance of playing
T with probability (1− q). From the Equality of Payoffs theorem
we have:

u1(H, σ) = u1(T , σ)

qu1(H,H) + (1− q)u1(H,T ) = qu1(T ,H) + (1− q)u1(T ,T )

q − (1− q) = −q + (1− q)

q = 1
2
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Equality of Payoffs

Let ρ be the mixed strategy of player 1 with a chance of playing H
of p and a chance of playing T with probability 1− p.From the
Equality of Payoffs theorem we also have:

u2(ρ,H) = u2(ρ,T )

pu2(H,H) + (1− p)u2(T ,H) = pu2(H,T ) + (1− p)u2(T ,T )

−p + (1− p) = p − (1− p)

p = 1
2

As expected.
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Nash’s Theorem

Every game that has a finite set of strategies has at least one Nash
equilibrium (involving pure or mixed strategies).

(It can be shown that there is always an odd number of Nash
equilibria.)
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